
INTRODUCTION

The renin-angiotensin system (RAS) has been
considered as a circulating hormonal system that
regulates blood pressure, blood flow, fluid volume
and electrolyte balance (1, 2). Angiotensinogen pro-
duced in the liver is cleaved to angiotensin (Ang) I
in circulation by renin that is secreted from the kid-
ney. Ang I is cleaved to Ang II by angiotensin con-
verting enzyme (ACE) that is mainly distributed in
pulmonary circulation. Ang II plays a main role in
the RAS by interacting with its specific receptor, Ang
II type 1 receptor (AT1R). Ang II-AT1R interaction
causes vasoconstriction and aldosterone release
from the adrenal gland. This classical view of the
RAS has been expanded by recent findings that RAS

is activated locally, particularly in the heart (3, 4),
the vessel wall (5-7), the kidney (8, 9) and the brain
(10-12). There are RAS components in these tis-
sues, allowing local synthesis of Ang peptides. Re-
cent reports also identified other receptors (13-15)
and angiotensin-related peptides such as Ang (1-7)
(16). Ang II was also reported to be generated by
other enzymes such as chymase (17). These find-
ings indicate that RAS could be activated locally and
regulated by the complicated crosstalk of the RAS
components in each organ.

AT1R blockers (ARBs) specifically block Ang II
binding to AT1R. Eventually, Ang II is directed to
stimulate AT2R. On the other hand, ACE inhibitors
(ACEIs) suppress angiotensin II production. ACEIs
also inhibit break down of bradykinin, leading to in-
crease in nitric oxide production. It has been re-
ported that ARBs or ACEIs exert various favorable
effects on endothelial function (18, 19), cardiac func-
tion (20, 21), cerebral vascular function (22, 23) and
renal function (24, 25) other than blood pressure
lowering. These findings suggest that blockade of
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RAS is an effective strategy for organ protection. In
fact, many clinical studies demonstrated that AT1R
blockers (ARBs) or ACE inhibitors are effective for
patients with cardiovascular, cerebrovascular and
renal diseases (20, 24, 26, 27).

Atherosclerosis occurs in whole arteries and re-
sults in various organ damages, including myocar-
dial infarction, cerebral infarction, and peripheral ar-
terial diseases, the main cause of death in Western
countries (28). Atherosclerosis is considered to be
one of the chronic inflammatory diseases (29, 30).
Ang II has significant pro-inflammatory actions on
the vessel wall, leading to progression and destabi-
lization of atherosclerotic lesions (29, 31). Although
multifactorial in etiology, continuous recruitment of
circulating leukocytes into the vessel wall plays cru-
cial roles in the pathogenesis of atherosclerosis. In-
flammatory cells detected in atherosclerotic lesions
are derived from bone marrow. A locally activated
RAS has been suggested to contribute to differen-
tiation and proliferation of bone marrow-derived
cells (32-34). Recently, we proposed a hypothesis
that the local RAS in bone marrow plays crucial
roles in atherosclerosis (35, 36). We demonstrated
that Ang II-AT1R pathway in bone marrow contrib-
utes to atherosclerotic development in the hyper-
cholesterolemic mice. In this review, we briefly sum-
marize recent evidence on the roles of RAS in the
pathogenesis of atherosclerosis and in the differen-
tiation of bone marrow cells. We describe our find-
ings on potential participation of bone marrow RAS
in progression and destabilization of atherosclerotic
plaques.

LOCAL EFFECTS OF AN ACTIVATED RAS
IN VASCULATURE

A growing body of evidence suggests that athe-
rosclerosis is a chronic inflammatory disease (29,
30). Recent advances in immunology have dissected
several molecular pathways that induce and promote
inflammatory responses in atherosclerotic lesions.
The RAS serves as a key player in the pathogene-
sis of atherosclerosis by stimulating a series of co-
ordinated cellular and molecular events observed in
the lesions (37-41). It is now well established that
Ang II has significant pro-inflammatory actions on
the vessel wall, leading to progression of atheroscle-
rosis (29). There are two different types of Ang II
receptors, AT1R and AT2R, in mammals (13). Both
AT1R and AT2R have been identified in the vessel

wall, although AT1R is believed to mediate most
of the atherogenic actions of Ang II (42, 43). The
greatest AT1R density has been found on vascular
smooth muscle cells and endothelial cells. In the
vascular wall, ACE is readily detectable on endothe-
lial cells and smooth muscle cells (44-46). Thus,
most of the components of RAS could be detected
in vasculature (47, 48). RAS is activated locally in
the atherosclerotic lesions (49) and in the damaged
vessels (50). Thus, these results suggest that not
only systemic but also local Ang II-AT1R pathway
could contribute to initiation and progression of athe-
rosclerosis.

EFFECTS OF RAS ON VASCULAR CELLS

Ang II up-regulates expression of adhesion mole-
cules (37, 51), chemokines (39, 52) and cytokines
(53, 54). These molecules induce endothelial cell
dysfunction (55), oxidation and uptake of LDL (56,
57), and proliferation of smooth muscle cells (58). In
advanced atherosclerotic lesions, Ang II stimulates
expression of matrix metalloproteinases (MMPs)
(59-61) and plasminogen activator inhibitor-1 (62),
leading to destabilization of atherosclerotic plaque
and alteration of fibrinolytic balance. Ang II also up-
regulates expression of VEGF that promotes adven-
titial angiogenesis (63-65) (Fig. 1).

Conversely, previous reports demonstrated that

Fig. 1 Atheropromoting effects of angiotensin II
Angiotensin II (Ang II) impairs NO synthesis and promotes re-
active oxygen species production by endothelial cells, causing
endothelial dysfunction. Ang II also promotes adhesion and in-
filtration of monocytes/macrophages by up-regulating adhesion
molecules and chemokines such as MCP-1. Ang II promotes oxi-
dation of LDL and foam cell formation of macrophages. Ang II
functions to destabilize atherosclerotic plaques by activating
macrophages, which induce apoptosis of smooth muscle cells
and proteolysis of collagen by MMPs. Ang II promotes periad-
ventitial angiogenesis by up-regulating VEGF expression.
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inhibition of the Ang II-AT1R pathway reduces athe-
rosclerosis (36, 66-68). It is generally assumed that
the beneficial effects obtained by Ang II-AT1R block-
ing are mediated by reduction of oxidative stress, in-
hibition of inflammation and improvement of endo-
thelial cell function (66, 67, 69, 70). We generated
ApoE-/-AT1aR-/- double knockout mice by cross-
breeding ApoE-/-AT1aR+/+ mice and ApoE+/+
AT1aR-/- mice (35). We also administered ARB,
olmesartan, into ApoE-/- AT1aR+/+ mice. Both ge-
netic ablation and pharmacological blockade of
AT1R effectively suppressed atherosclerotic lesion
formation in ApoE deficient mice. Moreover, genetic
disruption or pharmacological blockade of AT1R re-
sulted in reduced lipid deposition and increased col-
lagen contents in the atheroma. These results dem-
onstrated that blockade of Ang II-AT1R pathway not
only reduces atherosclerotic lesions but also stabi-
lizes the plaque (35).

It should be noted that the production of Ang II
could be increased and may act on the AT2R, when
AT1R is genetically disrupted or pharmacologically
blocked (71). Previous reports suggested an anti-
atherogenic effect of AT2R, although its function
and distribution are still under debate (72-74). Wu
et al. demonstrated that organ-protective actions of
valsartan, an ARB, were attenuated in AT2R-defi-
cient mice, suggesting that beneficial effects of AT1R
blockers are at least partly due to AT2R receptor
stimulation (75, 76). AT2R stimulation interacts with
AT1R stimulation at intracellular signaling mole-
cules, such as through activation of phosphatase
(77). In fact, Iwai et al. demonstrated that AT2R
stimulation attenuates atherosclerosis through inhi-
bition of oxidative stress and that the anti-atheroscle-
rotic effect of an ARB could be at least partly due to
AT2R stimulation by analyzing AT2R/ApoE-double-
knockout mice (73).

ROLES OF REACTIVE OXYGEN SPECIES
IN ATHEROGENESIS

Accumulating evidence indicates that vascular
reactive oxygen species (ROS) play a crucial role
in atherogenesis. Among many ROS generator,
nicotinamide dinucleotide phosphate (NAD(P)H)
oxidase-dependent pathway is important in vascu-
lar system (78). Barry-Lane et al. demonstrated that
NAD(P)H oxidase is important in the pathogenesis
of atherosclerosis by analyzing the genetically modi-
fied mice that are deficient for both apolipoprotein

E (ApoE) and p47phox, one subunits of NAD(P)H
oxidase (79). In this study, the double knockout
mice showed significant reduction in atherosclerotic
lesion compared with that of ApoE-deficient mice.
ROS acts not only as a modulator of vascular tonus
but also as a second messenger to alter the vascu-
lar cell phenotypes. ROS activates mitogen-acti-
vated protein kinase (80), Akt (81), and JAK (janus
kinase)/STAT (signal transducers and activators of
transcription) (82) pathways. These signals play a
crucial role in cell proliferation, apoptosis and phe-
notypic modification that are observed in atheroscle-
rotic lesions.

Association between RAS and ROS has been in-
vestigated extensively (5). Ang II induces produc-
tion of ROS, one of the most important mediators
of the atherogenic actions of RAS (70). Although
Ang II up-regulates expression of cytokines such
as interleukin-6 and tumor necrosis factor-α, phar-
macological blockade of AT1R with ARBs would not
be so effective to inhibit cytokine production com-
pletely. It was demonstrated that cytokines such as
TNF-α, IL-1β and IFN-γ increase mitochondrial-
and NADPH oxidase-generated ROS (83). Thus,
the in vivo inhibition of intracellular ROS produc-
tion by blocking vascular AT1R may play an adjunct
rather than a major role to prevent or reduce athero-
genesis. The above suggestion could be also com-
patible with the accumulating findings that AT1R
blocker could only have a modest effect on athero-
sclerosis diseases in patients (84).

ROLES OF INFLAMMATORY CELLS IN
ATHEROGENESIS

In initiation and progression of atherosclerotic le-
sions, RAS is activated locally and stimulates expres-
sion of vascular cellular adhesion molecule-1, intra-
cellular adhesion molecule-1 and monocyte chemo-
tactic protein-1 (MCP-1) (37, 39, 51, 52). These
molecules accelerate recruitment of inflammatory
cells into the vessel walls. It is generally believed
that the vascular endothelium serves as an inflam-
matory barrier by providing a nonadherent surface
to leukocytes. However, upon Ang II stimulation,
endothelium turns to promote infiltration of inflam-
matory cells by expressing adhesion molecules and
chemokines. After migrating into the vessel wall,
monocytes transform into macrophages and contrib-
ute to lipid deposition in the plaque (57, 85). Mono-
cytes/macrophages secret chemokines (86) and
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MMPs (60), leading to acceleration of atheroscle-
rotic lesion development. Moreover, recruited leuko-
cytes themselves have NAD(P)H oxidase subunits
and serve as a source of ROS (87, 88). Thus, acti-
vated RAS promotes interaction between circulat-
ing leukocytes and vascular cells, an important step
in the pathogenesis of atherosclerosis (40, 41). High
levels of ACE expression and Ang II have been
shown in experimental and human atherosclerotic
lesions (89-91). In human atherosclerotic lesions,
ACE, Ang II, and its receptor are co-localized at the
areas of inflammation (5). Taken together, these re-
sults suggest that local effects of an activated RAS
in vessel walls promote infiltration of inflammatory
cells into the vessel walls, a key feature of athero-
sclerosis.

LOCAL EFFECTS OF AN ACTIVATED RAS
IN BONE MARROW

Bone marrow is a highly organized organ. All
blood cells derive from hematopoietic stem cells
through complex steps of division and maturation.
Previous reports elucidated the surface receptors,
cytokines, and growth factors that potentially regu-
late hematopoiesis (92-94). However, the precise
mechanism by which the proliferation and differ-
entiation of hematopoietic stem cells are regulated
is not fully understood.

Randomized clinical trials have proved beneficial
effects of ACE inhibitors or ARBs in the treatment
of cardiovascular diseases (21, 23). However, it was
reported that ACE inhibitors or ARBs may have
suppressive effects on hematological processes. It
is reported that ACE inhibitors induced anemia and
leukocytopenia (95-97). ACE inhibitors and ARBs
have been shown to effectively reduce hematocrit
values in patient with renal transplantation (98, 99).
Haznedaroglu et al. proposed the existence of a lo-
cally activated RAS in bone marrow that contrib-
utes to hematological processes (100). Others also
demonstrated the presence of RAS components in
bone marrow and circulating blood cells. Rodgers
et al. showed the presence of AT1R in CD34+CD38+

cells, CD34+CD38- cells and lymphocytes (101). The
authors demonstrated that Ang II accelerated colony
formation of hematopoietic progenitor cells from
murine lineage negative bone marrow cells in a
dose dependent manner. Ang II also stimulated dif-
ferentiation of human CD34+ hematopoietic pro-
genitors from cord blood. The effects of Ang II on

hematopoietic progenitors were clearly inhibited by
an ARB, losartan. It was also reported that Ang II
and Ang (1-7) accelerated recovery of circulating
leukocytes and the myeloid lineage cells in bone
marrow after chemotherapy and irradiation (102,
103). Similarly, other reports demonstrated that
RAS components in bone marrow contribute to he-
matopoiesis (104-106). On the other hand, several
papers reported that a local RAS in bone marrow
plays a role in the pathological hematopoiesis (107,
108). bone marrow stromal cells also express AT1R,
whose activation possibly causes secretion of growth
factors or cytokines that increase hematopoietic
progenitor cells (109). Thus, it is likely that an-
giotensin peptides are potential stimulators of pro-
liferation and differentiation of multiple hematopoie-
tic lineages under physiological and pathological
conditions.

ANG II STIMULATES CONTRIBUTION OF
BONE MARROW-DERIVED CELLS TO THE
PATHOGENESIS OF ATHEROSCLEROSIS

Recently, we proposed that bone marrow-derived
cells significantly contribute to pathogenesis of athe-
rosclerosis (35, 36, 110-117). This phenomenon was
confirmed not only in various animal models of vas-
cular diseases, but also in human samples (118,
119). Ang II is supposed to promote contribution
of bone marrow-derived cells to atherosclerosis by
enhancing their mobilization, recruitment, differen-
tiation, and proliferation (35, 36). To confirm this no-
tion, we performed bone marrow transplantation
from GFP (Green Fluorescent Proteins)+/+ApoE-/-
mice to GFP-/-ApoE-/- mice. Administration of Ang
II to these bone marrow chimeric mice promoted
atherosclerosis lesion formation, which was asso-
ciated with increased infiltration of bone marrow-
derived GFP-positive cells to the lesion (35, 36)
(Fig. 2A). We also observed that Ang II infusion in-
creased the number of smooth muscle progenitor
cells, which are peripheral blood cells that turn to
α -smooth muscle actin-positive cells after culture
in the presence of PDGF-BB (116) (Fig. 2B). These
smooth muscle-like cells expressed abundant ma-
trix metalloproteinase-9 (MMP-9), which substan-
tially contribute to destabilization of atherosclerotic
plaques.
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ROLE OF BONE MARROW RAS IN THE
PATHOGENESIS OF ATHEROSCLEROSIS

Although interaction between leukocytes and vas-
cular cells plays a crucial role in the pathogenesis
of atherosclerosis, it remained to be elucidated
whether a local RAS, especially the Ang II-AT1R
pathway, in bone marrow contributes to vascular
diseases. To evaluate the potential participation of
AT1aR in bone marrow in the pathogenesis of athe-
rosclerosis, we generated several combinations of
bone marrow chimeric mice in a murine model of
hyperlipidemia and atherosclerosis (120). In ro-
dents, two AT1R subtypes, AT1aR and AT1bR, have
been identified. In the vasculature, AT1aR is pre-
dominant and mediates most of the physiological
and pathophysiological responses to Ang II in mice
(121, 122). We also revealed that AT1aR was abun-
dantly expressed in bone marrow, whereas other re-
ceptors were hardly detected in bone marrow cells

by RT-PCR.
At first, we performed bone marrow transplanta-

tion (BMT) from the ApoE-/-AT1aR-/- mice to the
ApoE-/-AT1aR-/- mice (BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR -/-

mice). These bone marrow chimeric mice had no
AT1aR in their body. We also performed BMT from
the ApoE-/-AT1aR+/+ mice to the ApoE-/-AT1aR-/-
mice (BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR -/- mice). These
bone marrow chimeric mice had AT1aR in bone
marrow, but not in their innate vascular cells. We
infused Ang II (5 mg/kg/day) into these bone
marrow chimeric mice for 8 weeks using an os-
motic mini-pump. There was no significant differ-
ence in systolic blood pressure or plasma choles-
terol level between these BMT mice. After 8 weeks
of infusion, en face Sudan IV staining of the aortic
arch revealed that atherosclerotic lesions in the
BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR -/- mice were significantly
larger than those in the BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR -/-

mice. Histological analysis of atherosclerotic lesions

Fig. 2 Ang II promotes accumulation of macrophages in atherosclerotic plaque
A. Ang II infusion into the bone marrow-chimeric mice promoted atherosclerotic lesion formation as determined by en face Sudan
IV staining. Bone marrow-derived GFP-positive cells accumulated at the sites of atherosclerosis.
B. α -smooth muscle actin-positive cells could be obtained from the culture of human peripheral mononuclear cells. Those smooth
muscle- like cells expressed MMP-9.
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in the aortic root revealed that lipid deposition de-
tected by oil red O staining was significantly acceler-
ated in the BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR -/- mice com-
pared with those in the BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR -/-

mice. Collagen content was significantly decreased
in the BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR -/- mice compared
with that in the BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR -/- mice as
determined by Sirius red staining. Taken together,
these results suggest that bone marrow transplan-
tation from the ApoE-/-AT1aR+/+ animals to the
ApoE-/-AT1aR-/- mice could restore Ang II-in-
duced acceleration of atherosclerosis and plaque
destabilization, even when the recipient vascular
cells did not express AT1aR (35).

Next, to investigate the role of bone marrow
AT1aR and to keep track of bone marrow-derived
cells in the process of atherosclerotic lesion pro-
gression, we replaced the bone marrow of the
ApoE-/-AT1aR+/+ mice with that of the ApoE-/-
AT1aR-/-GFP+/+ mice (BMT ApoE-/-AT1aR-/- - - > ApoE-/-AT1aR+/+

mice) or the ApoE -/- AT1aR +/+ GFP +/+ mice
(BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR +/+ mice). The former
bone marrow chimeric mice lacked AT1aR only in
bone marrow, and the latter chimeric mice had
AT1aR in both bone marrow and vasculature. In
these bone marrow chimeric mice, we compared the
effects of continuous Ang II infusion on atheroscle-
rotic lesion formation. Ang II (5 mg/kg/day) was
infused after BMT for 8 weeks. Atherosclerotic
lesion formation was significantly attenuated in the
BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR +/+ compared with that in
the BMT ApoE-/-AT1aR+/+ - - > ApoE-/-AT1aR+/+ mice as determined
by en face Sudan IV staining of the aortic arch. In
these two types of bone marrow chimeric mice,
there was no significant difference in blood pressure
or total cholesterol level. In atherosclerotic plaques
in the aortic root, the BMT ApoE -/-AT1aR -/- - - > ApoE -/- AT1aR +/+

mice showed significantly reduced lipid deposition
and increased collagen content compared with those
in the BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR +/+ mice. These re-
sults suggest that AT1aR in bone marrow-derived
cells may play a role in the pathogenesis of acceler-
ated atherosclerosis induced by Ang II. Infiltration
of macrophage into the lesions was significantly
reduced in BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR +/+ compared
with that in BMT ApoE-/-AT1aR+/+ - - > ApoE-/-AT1aR+/+ mice as
determined by immunostaining against MOMA-
2. Lack of AT1aR in bone marrow cells decreased
atherosclerotic lesion progression and stabilized
plaques, despite the existence of AT1aR in vascular
cells (35).

We examined gene expression in the plaques

by means of a laser microdissection system and
quantitative RT-PCR after 4 weeks infusion of
Ang II. Expression of MMP-9 and MCP-1 in the
BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR +/+ mice was signifi-
cantly suppressed compared with those in the
BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR +/+ mice. On the other
hand, there was no significant difference in VCAM-1
expression between the two bone marrow trans-
plantation mice. Immunohistochemical analysis re-
vealed that accumulation of bone marrow-derived
GFP-positive cells was significantly attenuated in the
BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR +/+ mice compared with
that in the BMT ApoE -/- AT1aR +/+ - - > ApoE -/- AT1aR +/+ mice. Most
of the bone marrow-derived cells in the lesions were
positive for macrophage marker. Furthermore, the
percentage of bone marrow-derived GFP-positive cells
among MMP-9-positive cells or MCP-1-positive cells
was greater in the BMT ApoE-/-AT1aR+/+ - - > ApoE-/-AT1aR+/+ mice
than in the BMT ApoE -/- AT1aR -/- - - > ApoE -/- AT1aR +/+ mice, sug-
gesting that AT1aR in bone marrow could influence
the instability of the atherosclerotic lesions (35).
Our findings indicate that AT1aR expressed not only
on vascular cells but also on bone marrow cells
plays a role in the pathogenesis of atherosclerosis,
at least in part. Consistent with our results, contri-
bution of AT1aR in bone marrow cells to the patho-
genesis of atherosclerosis was demonstrated in
LDL-receptor-deficient mice (123).

It is a generally accepted view that atherosclerotic
lesions are initiated by endothelial cell damage, fol-
lowed by monocyte/macrophage adhesion and in-
vasion as well as smooth muscle cell migration and
proliferation (30, 124). Although there are a num-
ber of cellular and molecular differences, resteno-
sis after angioplasty shares an important pathophysi-
ological process with atherosclerosis, where injuries
to the endothelium are followed by impaired re-
endothelialization (125, 126). It has been believed
that re-endothelialization is caused only by migra-
tion and proliferation of adjacent endothelial cells
in the vessel wall (127). However, accumulating evi-
dence indicates that bone marrow derived endo-
thelial progenitor cells (EPCs) also participate in this
process (128-131). EPC-dependent neovasculariza-
tion has been implicated in collateral development
in occlusive vascular diseases (129, 132-135). Bone
marrow cells including stem cells express AT1R.
Thus, it is possible that a local RAS in bone mar-
row has a role in EPC biology leading to neovascu-
larization. Actually, it was demonstrated that acti-
vation of RAS stimulates EPC proliferation and ne-
ovascularization (136). These studies suggest that
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ROS may be involved in the balance between self-
renewal and differentiation of progenitors and that
anti-oxidant may play a role in preservation of
stemness of progenitors (137-139). Murohara and
his colleagues showed that the Ang II-AT1R path-
way plays an important role in ischemia-induced an-
giogenesis by supporting inflammatory cell infiltra-
tion and angiogenic cytokine expression (140). On
the other hand, it was reported that blockade of RAS
increase the number of EPC and neovascularization
in animals models of metabolic diseases (141-143).
These studies suggested that Ang II accelerates the
onset of EPC senescence by a gp91phox-mediated
increase of oxidative stress leading to impairment
of EPC proliferation. Under pathological conditions,
RAS may be over-activated and the excess produc-
tion of Ang II might accelerate EPC senescence, re-
sulting in the impairment of EPC function. Future
study is required to confirm that RAS is essential
for EPC proliferation and neovascularization but ex-
cessive activation of RAS may turn to enhance se-
nescence and dysfunction of EPCs (117).

CONCLUSIONS

Our findings demonstrate that AT1aR expressed
not only on vascular cells but also on bone marrow-
derived cells plays a role in the pathogenesis of athe-
rosclerosis, at least in part, by accelerating infiltra-
tion of bone marrow-derived inflammatory cells in
the vessel wall (35, 113, 144). Therefore, blockade
of AT1R not only in vascular cells but also in bone
marrow could be an important strategy to prevent
progression and destabilization of atherosclerotic
plaques.
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