
INTRODUCTION

Most T lymphocytes develop in the thymus. The
thymus is a small, isolated organ that can be manipu-
lated in vivo and can be analyzed in vitro . Develop-
mental biology of T lymphocytes investigates how
the hematopoietic precursor cells are induced to
develop to mature T lymphocytes in the thymus.
Specifically, interesting questions to be asked include
issues such as (i) how immature T lymphocytes are se-
lected for life and death according to their antigen-recognition
specificity, (ii) how multipotent precursor cells are
committed to become individual T lymphocyte lin-
eages, and (iii) how developing T lymphocytes re-
locate along the differentiation into, within and out
of the thymus.

In the thymus, immature lymphoid precursor cells
begin to rearrange the V (D) J segments of T-cell
antigen-receptor (TCR) genes. The V (D) J rearrange-
ment is an irreversible alteration of genomic DNA

in the nucleus, so that individual lymphocytes cannot
predict the antigen-recognition specificity before they
express TCR chains on the cell surface (1, 2). Con-
sequently, immature T lymphocytes in the thymus,
also called thymocytes, may express various kinds
of antigen-recognition specificity, including harmful
specificity, useful specificity, and useless specificity.
The developmental fate of immature thymocytes is
determined by the interaction between the TCR that
they express and its ligand, peptide-MHC complex,
expressed in the thymus (3, 4). High avidity TCR
interactions cause apoptosis of thymocytes, deleting
harmful self-reactive cells, a process referred to as
negative selection. Thymocytes expressing TCR that
fail to interact with MHC ligands are also destined
to die within the thymus, eliminating useless T cells
that are unable to recognize foreign peptide-loaded
self-MHC molecules. Low avidity TCR interactions,
on the other hand, elicit the signal that allows im-
mature thymocytes to differentiate into mature T
lymphocytes, a developmental process referred to as
positive selection. Thus, positive selection of thymocytes
enriches useful T cell clones that can recognize for-
eign peptides presented by self-MHC molecules. It
has been shown that cell surface events such as avid-
ity and valency of TCR ligation by peptide-MHC com-
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plex are involved in determining the opposite des-
tinations (life and death) of immature thymocytes
(5-8). However, it is still largely unknown how these
cell-surface events are transmitted within thymocytes
to determine life-death destinations of the cells.

Majority of positively selected thymocytes are in-
duced to develop into either one of CD4+CD8- T
cells (mostly helper T cells) or CD4-CD8+ T cells
(mostly killer T cells). Even though TCR signal in-
tensity as well as other signals such as Notch have
been shown to be involved in lineage choice between
CD4+CD8- T cells and CD4-CD8+ T cells (9-11), it is
largely unclear how the choice between the T cell
lineages is made. It is also unclear how multipotent
precursor cells that have migrated to the thymus are
destined to becomeT lymphocytes rather than other cell
lineages such asB lymphocytes and other hematopoietic
cells.

Developing T lymphocytes relocate through the
thymus during differentiation. Immature lymphoid
precursor cells immigrate into the thymus, devel-
oping thymocytes relocate within the thymus from
the cortex to the medulla, and finally mature T lympho-
cytes emigrate from the thymus (12-14). How the
cellular movement along T lymphocyte development
is controlled is largely unknown.

Exploring these issues of T cell development would
be relevant for better understanding of complex bio-
logical systems specialized inmulti-cellular organisms,
as well as for offering better treatment of various clini-
cal situations in which immune systems are involved.
To examine these issues and to aid clinical applica-
tions, our laboratory has devised a somatic cell-gene
transfer technique in which one can express a given
gene in developing T lymphocytes.

GENE-TRANSFER INTO DEVELOPING T
LYMPHOCYTES

To genetically modulate developing T lymphocytes,
the manipulation of embryonic cells such as transgenesis
and ES-mediated homologous recombination has been
most widely used (15-18). These techniques have
greatly contributed to the current understanding of
molecular mechanism for T lymphocyte development.
However, genetic manipulation of embryonic cells
alone cannot directly allow in situ analysis of the
cellular development within the thymus organ.

On the other hand, the analysis of T cell devel-
opment in organ culture of mouse fetal thymus lobes
was first established in the early seventies (19-21).
The fetal thymus organ culture (FTOC) technique

serves a unique in vitro cell culture system in that
functional T cells are differentiated from immature
progenitor cells (22). T cell development in FTOC
very well represents T cell development during fetal
life, even representing the time course. FTOC allows
in vitro T cell development isolated from any further
cellular or humoral supplies by other organs ; thus,
it is suitable for the addition of any reagents, such as
drugs and antibodies to the culture, for examining
their effects on T cell development. FTOC is also
useful for the analysis of T-lymphopoietic capability
by hematopoietic progenitor cells.

Recently, retroviral gene transfer has been successfully
used for a wide variety of cells including hematopoietic
cells (23-28) and developing B lymphocytes (29, 30).
Retrovirus-mediated gene transfer has several advan-
tages over the transgenic techniques, including rapid
and close analysis of specific cellular events in vitro
and potential application for gene therapy. However,
retrovirus-mediated gene transfer often suffers from
technical difficulties such as low efficiency, hampering
applications in various cell types. Consequently, at-
tempts to introduce exogenous genes using retroviruses
have gained limited success on developingT lymphocytes
(31-37).

During the last three years, a successful and re-
producible gene-transfer technique for developing
T lymphocytes has been established in our labora-
tory (22, 38, 39). The short-term co-culture of im-
mature thymocytes in suspension with high-titer
retrovirus-producing cells in the presence of interleukin-7,
a cytokine that maintain the survival of immature
lymphocytes, seems to be the key for highly efficient
gene transduction (Fig. 1). We have constructed re-
combinant retroviruses expressing green fluorescence
protein (GFP) along with a protein of interest,
using the internal ribosomal entry site (IRES) se-
quence (Fig. 1). The co-expression of GFP is useful,
as gene-transferred cells could be readily detected
and sorted using flow cytometry. Immature thymocytes
have been successfully infected with these retroviruses
in a short-term suspension culture in the presence
of interleukin-7, and were examined for their devel-
opmental capability by transferring to the thymus or-
gan culture. The fate of isolated GFP-expressing cells
can be traced under the fluorescence microscope or
by multi-color flow cytometric analysis, so that the
developmental potential of genetically manipulated
cells may be directly evaluated in FTOC (Fig. 1).

Using the retroviral gene-transfermethod, we have
shown that ERK kinase and p38 kinase character-
ize TCR signals that mediate positive and negative
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selection of developing thymocytes, respectively (40).
Quantitative differences in TCR ligation at cell sur-
face have been shown to determine the fate of im-
mature thymocytes during positive and negative
selection (5-8). Our results showing differential in-
volvement of ERK and p38-kinase signaling cascade
in positive and negative selection suggested that dif-
ferential TCR ligation in developing thymocytes may
activate differential MAP kinase pathways, leading
to opposite destinations of immature thymocytes.
We have also shown that Pref-1 expressed on the
surface of thymic epithelial cells increase the ex-
pression of HES-1 transcription factor in developing
thymocytes, thereby maintaining the survival of
thymocytes (41). Thus, the retroviral technique that
we devised is an efficient and reliable method for
gene-transfer into developing T lymphocytes.

POTENTIAL APPLICATION OF GENE-TRANSFER
IN IMMUNODEFICIENCIES

Gene-transfer for immature T lymphocytes is like-
ly useful for genetic manipulation of T lymphocyte
development. The most straightforward application
would attempt to restore of immunodeficiencies by
the transfer of genes that promote the development of
T lymphocytes (Fig. 2). For example, immunodeficiency
in ZAP-70 deficient patients could be best restored
by transferring the ZAP-70 gene into immature thymocytes
(42, 43). Such a restoration could be applied not only
for congenital immunodeficiencies such as X-linked
severe combined immune deficiency and selective
T cell deficiency, but also for acquired immunodeficiencies

such as AIDS and immune suppression by chemo-
therapy or after transplantation.

POTENTIAL APPLICATION OF GENE-TRANSFER
IN GENE THERAPIES

The gene-transfer for immature T lymphocytes is
also viewed as a very efficient vehicle to introduce gene
products into the thymus and developing thymocytes.
It is therefore conceivable that the gene-transfer into
immature T lymphocytes could efficiently induce im-
mune tolerance to the products of any foreign genes.
The gene-specific induction of immune tolerance of-
fers at least two types of clinical applications. First
is the treatment of allergy, in which the immune
system reacts to foreign molecules that are not ex-
pected to be immunogenic. The introduction of the
allergen gene to immature thymocytes may cause
tolerance to the allergen, so that allergic reactions
would be expected to diminish after the gene-transfer.
This line of genetic modulation of immune responses
can also be applied to reduce auto-reactivity in various
autoimmune diseases. Second is immunological sup-
port for gene therapies of any cell types (Fig. 3). It
has been well appreciated that one of the most se-
rious problems ingene therapy is the rejection of
vector-introduced cells by exerting immune responses
to vector-derived gene products (44-47). Such immune
responses dramatically preclude the prolonged effec-
tiveness of introduced genes. In addition, once the
immune response to the introduced vector is estab-
lished, immune cells would quite efficiently attack
the cells that are newly introduced with the vector.

Fig.1. Retroviral infection of developing thymocytes.
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It would thus be nearly impossible to expect efficient
therapeutic effects by repeated treatment with the same
vector during gene therapy.

On the other hand, immune responses are crucial-
ly regulated by T lymphocytes. T lymphocytes are
the cells that immunologically distinguish self to be
protected from non-self to be attacked. It is therefore
conceivable that one can specifically repress immune
responses to a foreign molecule by displaying that
molecule in the thymus as a ’self’ molecule. The vector

transfer of the therapeutic gene into the thymus, for
example by the intrathymic administration of imma-
ture thymocytes that have been gene-transferred with
the same vector, would induce immune tolerance
to the vector (48). Consequently, subsequent gene
therapy is expected to be sustained without being
disrupted by immune reactions (Fig. 3).

These applications of gene-transfer are currently
being evaluated in our laboratory. We believe that
the evaluation and further improvement of genetic

Fig.2. Strategies for gene therapies of immune deficiencies.

Fig.3. Gene therapy supported by gene-introduced T lymphocytes to the thymus.
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modulation of the immune system offers a promie
of overcoming immune diseases in the new century.
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