ID 112394
Xiao, Jinzhong Morinaga Milk Industry Co., Ltd.
Nagatomo, Ryosuke Ritsumeikan University
Umemoto, Hitomi Tokushima University
Morimoto, Yuki Tokushima University
Akatsu, Hiroyasu Nagoya City University
Inoue, Koichi Ritsumeikan University
Content Type
Journal Article
Male Tsumura Suzuki obese diabetes (TSOD) mice spontaneously develop obesity and obesity-related metabolic syndrome. Gut dysbiosis, an imbalance of gut microbiota, has been implicated in the pathogenesis of metabolic syndrome, but its mechanisms are unknown. Short-chain fatty acids (SCFAs) are the main fermentation products of gut microbiota and a link between the gut microbiota and the host’s physiology. Here, we investigated a correlation among gut dysbiosis, SCFAs, and metabolic syndrome in TSOD mice. We detected enriched levels of Gram-positive bacteria and corresponding decreases in Gram-negative bacteria in 24-wk-old metabolic syndrome-affected TSOD mice compared with age-matched controls. The abundance of Bacteroidetes species decreased, the abundance of Firmicutes species increased, and nine genera of bacteria were altered in 24-wk-old TSOD mice. The total plasma SCFA level was significantly lower in the TSOD mice than in controls. The major plasma SCFA—acetate—decreased in TSOD mice, whereas propionate and butyrate increased. TSOD mice had no minor SCFAs (valerate and hexanoate) but normal mice did. We thus concluded that gut dysbiosis and consequent disruptions in plasma SCFA profiles occurred in metabolic syndrome-affected TSOD mice. We also propose that the TSOD mouse is a useful model to study gut dysbiosis, SCFAs, and metabolic syndrome.
Journal Title
Scientific Reports
Springer Nature
Start Page
Published Date
Supplementary Information : srep_7_15876_s1.pdf
© The Author(s) 2017
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
DOI (Published Version)
URL ( Publisher's Version )
FullText File
Medical Sciences