ID 112407
Author
Nakao, Reiko National Institute of Advanced Industrial Science and Technology (AIST) Tokushima University Educator and Researcher Directory KAKEN Search Researchers
Shimba, Shigeki Nihon University
Oishi, Katsutaka National Institute of Advanced Industrial Science and Technology (AIST)|Tokyo University of Science|The University of Tokyo
Content Type
Journal Article
Description
We recently found that the mRNA expression of Slc25a25, a Ca2+-sensitive ATP carrier in the inner mitochondrial membrane, fluctuates in a circadian manner in mouse skeletal muscle. We showed here that the circadian expression of muscle Slc25a25 was damped in Clock mutant, muscle-specific Bmal1-deficient, and global Bmal1-deficient mice. Furthermore, a ketogenic diet (KD) that induces time-of-day-dependent hypothermia (torpor), induced Slc25a25 mRNA expression in skeletal muscle. Hypothermia induced by KD did not affect thermogenic genes such as Sarcolipin and Pgc1a in muscles and Ucp1 in adipose tissues. Sciatic denervation abolished circadian and KD-induced Slc25a25 expression, suggesting that the circadian clock regulates muscle Slc25a25 expression via neural pathways. We measured body temperature (Tb) in sciatic denervated mice fed with KD to determine the functional role of KD-induced Slc25a25 expression. Sciatic denervation abolished Slc25a25 expression and augmented KD-induced hypothermia compared with sham-operated mice, but did not affect Tb in mice given a normal diet. These findings suggest that KD feeding induces expression of the muscle circadian gene Slc25a25 via neural pathways, and that SLC25A25 might be involved in muscle thermogenesis under KD-induced hypothermia in mammals.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
7
Start Page
2885
Published Date
2017-06-06
Remark
Supplementary Information : srep_7_2885_s1.pdf
Rights
© The Author(s) 2017
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences