number of access : ?
number of downloads : ?
ID 113252
Author
Keywords
review classification
transfer learning
Long Short-Term Memory
different media
Content Type
Journal Article
Description
We propose a model to classify reviews based on review data from different media sources. Recently, research has been actively conducted on transfer learning between different domains with various kinds of big data as the target. The fact that evaluation expressions often vary in different domains presents a barrier to reputation analysis. Users commonly use various linguistic expressions to refer to creative works, depending on the specific media form. For example, the terms or expressions used in anime to describe creative works within that medium are different from the expressions used in comics, or games or movies. These differences can be considered as features of each individual medium. We should expect, then, that there would be differences in evaluation expressions among the various media, as well. We analyze the effects of such differences on classification accuracy by conducting transfer learning between review data from different media and demonstrate compatibility between the original (pre-transfer) and target (post-transfer) media by constructing a review classification model. As a result of our evaluation experiments, we are able to more accurately estimate review scores without using SO-Scores for training review fragments based on Long Short-Term Memory (LSTM) rather than using a method based on SO-Scores.
Journal Title
International Journal of Advanced Intelligence
ISSN
18833918
Publisher
AIA International Advanced Information Institute
Volume
9
Issue
4
Start Page
541
End Page
555
Published Date
2017-12
EDB ID
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology