ID | 113352 |
Title Alternative | コンピュータ断層のための加速化OS-EMアルゴリズムに対応した連続時間系
|
Author |
Tateishi, Kiyoko
Tokushima University
Yamaguchi, Yusaku
Shikoku Medical Center for Children and Adults
Abou Al-Ola, Omar M.
Tanta University
|
Keywords | Computed tomography
Image reconstruction
Inverse problem
Iterative reconstruction
Dynamical system
|
Content Type |
Thesis or Dissertation
|
Description | The maximum-likelihood expectation-maximization (ML-EM) algorithm is used for an iterative image reconstruction (IIR) method and performs well with respect to the inverse problem as cross-entropy minimization in computed tomography. For accelerating the convergence rate of the ML-EM, the ordered-subsets expectation-maximization (OS-EM) with a power factor is effective. In this paper, we propose a continuous analog to the power-based accelerated OS-EM algorithm. The continuous-time image reconstruction (CIR) system is described by nonlinear differential equations with piecewise smooth vector fields by a cyclic switching process. A numerical discretization of the differential equation by using the geometric multiplicative first-order expansion of the nonlinear vector field leads to an exact equivalent iterative formula of the power-based OS-EM. The convergence of nonnegatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem for consistent inverse problems. We illustrate through numerical experiments that the convergence characteristics of the continuous system have the highest quality compared with that of discretization methods. We clarify how important the discretization method approximates the solution of the CIR to design a better IIR method.
|
Journal Title |
Mathematical Problems in Engineering
|
ISSN | 1024123X
15635147
|
NCID | AA11947206
|
Publisher | Hindawi
|
Volume | 2017
|
Start Page | 1564123
|
Published Date | 2017-08-06
|
Remark | 内容要旨・審査要旨・論文本文の公開
本論文は,著者Kiyoko Tateishiの学位論文として提出され,学位審査・授与の対象となっている。 |
Rights | © 2017 Kiyoko Tateishi et al. This is an open access article distributed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
ETD
|
MEXT report number | 甲第3272号
|
Diploma Number | 甲保第37号
|
Granted Date | 2019-03-20
|
Degree Name |
Doctor of Health Science
|
Grantor |
Tokushima University
|
departments |
Medical Sciences
|