number of access : ?
number of downloads : ?
ID 113911
Author
Zhang, Guodong Tokushima University
Jiang, Peilin Xian Jiao Tong University
Content Type
Journal Article
Description
Person reidentification, which aims to track people across nonoverlapping cameras, is a fundamental task in automated video processing. Moving people often appear differently when viewed from different nonoverlapping cameras because of differences in illumination, pose, and camera properties. The color histogram is a global feature of an object that can be used for identification. This histogram describes the distribution of all colors on the object. However, the use of color histograms has two disadvantages. First, colors change differently under different lighting and at different angles. Second, traditional color histograms lack spatial information. We used a perception-based color space to solve the illumination problem of traditional histograms. We also used the spatial pyramid matching (SPM) model to improve the image spatial information in color histograms. Finally, we used the Gaussian mixture model (GMM) to show features for person reidentification, because the main color feature of GMM is more adaptable for scene changes, and improve the stability of the retrieved results for different color spaces in various scenes. Through a series of experiments, we found the relationships of different features that impact person reidentification.
Journal Title
Applied Computational Intelligence and Soft Computing
ISSN
16879724
16879732
Publisher
Hindawi
Volume
2017
Start Page
5834846
Published Date
2017-01-11
Rights
© 2017 Guodong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology