Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115683
Author
Hayashi, M. Kansai Medical University
Novak, I. University of Copenhagen
Matsuda, H. Kansai Medical University
Keywords
Adenosine receptor
CFTR
Cl− channel
Duct
Pancreas
Content Type
Journal Article
Description
Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (V te) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on V te, an equivalent short-circuit current (I sc), and whole-cell Cl− currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased I sc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of I sc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion.
Journal Title
Pflügers Archiv: European Journal of Physiology
ISSN
00316768
14322013
NCID
AA00771833
Publisher
Springer Nature
Volume
468
Issue
7
Start Page
1171
End Page
1181
Published Date
2016-03-11
Rights
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences