Total for the last 12 months
number of access : ?
number of downloads : ?
ID 116247
Author
Takayama, Takuma Tokushima University
Lila, Amr S. Abu Zagazig University|University of Hail
Kanazawa, Yuki Tokushima University
Keywords
antitumor immunity
chemotherapy
doxorubicin (DXR)
drug delivery system
Doxil®
Content Type
Journal Article
Description
Doxorubicin (DXR) has been reported to have direct cytotoxicity against cancer cells and indirect immunotoxicity by modulation of host antitumor immunity. Hence, it may prevent cancer progression by a dual mechanism. Doxil®, a formulation of DXR encapsulated in polyethylene glycol modified (PEGylated) liposomes, is the most widely used of the clinically approved liposomal anticancer drugs. However, the effect of Doxil® on host antitumor immunity is not well understood. In this study, Doxil® efficiently suppressed tumor growth in immunocompetent mice bearing C26 murine colorectal carcinomas, but not in T cell-deficient nude mice, indicating a contribution of T cells to the overall antitumor effect of Doxil®. In immunocompetent mice, Doxil® increased major histocompatibility complex (MHC-1) levels in C26 tumors, which may be an indicator of increased immunogenicity of tumor cells, and potentially amplified tumor immunogenicity by decreasing immunosuppressive cells such as regulatory T cells, tumor-associated microphages and myeloid-derived suppressor cells that collectively suppress T cell-mediated antitumor responses. This suggests that encapsulation of DXR into PEGylated liposomes increased the therapeutic efficacy of DXR though effects on host antitumor immunogenicity in addition to direct cytotoxic effects on tumor cells. This report describes the role of host antitumor immunity in the overall therapeutic effects of Doxil®. Manipulating pharmacokinetics and biodistribution of chemotherapeutic agents with immunomodulatory properties may increase their therapeutic efficacies by amplifying host antitumor immunity in addition to direct cytotoxic effects on tumor cells.
Journal Title
Pharmaceutics
ISSN
19994923
Publisher
MDPI
Volume
12
Issue
10
Start Page
990
Published Date
2020-10-19
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Pharmaceutical Sciences