Total for the last 12 months
number of access : ?
number of downloads : ?
ID 118479
Author
Oshima, Yoichi Keio University
Kanda, Takeshi Keio University
Tajima, Takaya Keio University
Itoh, Tomoaki Keio University
Uchiyama, Kiyotaka Keio University
Yoshimoto, Keiko Keio University
Sasabe, Jumpei Keio University
Yasui, Masato Keio University
Itoh, Hiroshi Keio University
Content Type
Journal Article
Description
Sodium benzoate (SB), a known D-amino acid oxidase (DAO) enzyme inhibitor, has an anti-inflammatory effect, although its role in renal damage has not been explored. 2,8-dihydroxyadenine crystal induced chronic kidney disease, in which TNF-α is involved in the pathogenesis, was established by oral adenine administration in C57BL/6JJcl mice (AdCKD) with or without SB to investigate its renal protective effects. SB significantly attenuated AdCKD by decreasing serum creatinine and urea nitrogen levels, and kidney interstitial fibrosis and tubular atrophy scores. The survival of AdCKD mice improved 2.6-fold by SB administration. SB significantly decreased the number of infiltrating macrophages observed in the positive F4/80 immunohistochemistry area and reduced the expression of macrophage markers and inflammatory genes, including TNF-α, in the kidneys of AdCKD. Human THP-1 cells stimulated with either lipopolysaccharide or TNF-α showed increased expression of inflammatory genes, although this was significantly reduced by SB, confirming the anti-inflammatory effects of SB. SB exhibited renal protective effects in AdCKD in DAO enzyme deficient mice, suggesting that anti-inflammatory effect of SB was independent of DAO enzyme activity. Moreover, binding to motif DNA sequence, protein level, and mRNA level of NF-κB RelB were significantly inhibited by SB in AdCKD kidneys and lipopolysaccharide treated THP-1 cells, respectively. We report that anti-inflammatory property of SB is independent of DAO enzymatic activity and is associated with down regulated NF-κB RelB as well as its downstream inflammatory genes such as TNF-α in AdCKD.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
13
Start Page
3331
Published Date
2023-02-27
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences