Total for the last 12 months
number of access : ?
number of downloads : ?
ID 118918
Author
Sun, Luchuanyang Nagasaki University
Kim, Sangeun Nagasaki University
Mori, Ryoichi Nagasaki University
Miyaji, Nobuyuki Toyo Koso Kagaku Co., Ltd.
Keywords
astaxanthin
mitochondrial ROS
mitochondrial energy metabolism
mitochondrial succinate dehydrogenase
hypoxia-inducible factor-1α
interleukin-1β
Content Type
Journal Article
Description
Astaxanthin (AX) is a carotenoid that exerts potent antioxidant activity and acts in cell membranes and mitochondria, which consist of the bilayer molecules. Targeting mitochondria to ameliorate inflammatory diseases by regulating mitochondrial metabolism has become possible and topical. Although AX has been shown to have anti-inflammatory effects in various cells, the mechanisms are quite different. In particular, the role of AX on mitochondrial metabolism in macrophages is still unknown. In this study, we investigated the effect of AX on mitochondria-mediated inflammation and its mechanisms in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. AX attenuated the mitochondrial O2− production and maintained the mitochondrial membrane potential, implying that AX preserved mitochondrial homeostasis to avoid LPS stimulation-induced mitochondrial dysfunction. Additionally, AX prevented the decrease in mitochondrial complexes I, II, and III, which were caused by LPS stimulation. Especially, AX inhibited the reduction in mitochondrial succinate dehydrogenase (SDH; complex II) activity and upregulated the protein and mRNA level of SDH complex, subunit B. Furthermore, AX blocked the IL-1β expression by regulating the SDH-HIF-1α axis and suppressed the energy shift from an OXPHOS phenotype to a glycolysis phenotype. These findings revealed important effects of AX on mitochondrial enzymes as well as on mitochondrial energy metabolism in the immune response. In addition, these raised the possibility that AX plays an important role in other diseases caused by SDH mutation and metabolic disorders.
Journal Title
Marine Drugs
ISSN
16603397
Publisher
MDPI
Volume
20
Issue
11
Start Page
660
Published Date
2022-10-25
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences