ID | 119492 |
Title Alternative | Substrate RNA specificity of ArcS
|
Author |
Fujita, Shu
Ehime University
Sugio, Yuzuru
Ehime University
Kawamura, Takuya
Ehime University
Yamagami, Ryota
Ehime University
Oka, Natsuhisa
Gifu University
Hirata, Akira
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Yokogawa, Takashi
Gifu University
Hori, Hiroyuki
Ehime University
|
Content Type |
Journal Article
|
Description | Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5′-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
|
Journal Title |
Journal of Biological Chemistry
|
ISSN | 00219258
1083351X
|
NCID | AA1202441X
|
Publisher | American Society for Biochemistry and Molecular Biology|Elsevier
|
Volume | 300
|
Issue | 8
|
Start Page | 107505
|
Published Date | 2024-06-27
|
Rights | This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Science and Technology
|