ID | 119643 |
Author |
Ghosh, Sharmila
Tokushima University
Morita, Akinori
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Sakaue, Masahiro
Tokushima University
Fujiwara, Ken
Tokushima University
Morita, Daiki
Tokushima University
Sonoyama, Yuichiro
Tokushima University
Higashi, Yuichi
Tokushima University
Sasatani, Megumi
Hiroshima University
|
Keywords | mouse model
radiation proctitis
Lgr5-positive stem cell
crypt base regeneration
caudal half-body irradiation
|
Content Type |
Journal Article
|
Description | The intestinal tract is a typical radiosensitive tissue, and radiation rectal injury is a severe side effect that limits the prescribed dose in radiotherapy of the abdominal and pelvic region. Understanding the post-irradiation kinetics of Lgr5-positive stem cells is crucial in comprehending this adverse process. In this study, we utilized Lgr5-EGFP knock-in mice expressing EGFP and LGR5 antibody fluorescence staining of wild-type mice. At the state of radiation injury, the qPCR analysis showed a significant decrease in the expression level of Lgr5 in the rectal epithelial tissue. The dose-response relationship analysis showed that at low to moderate doses up to 10 gray (Gy), Lgr5-clustered populations were observed at the base of the crypt, whereas at sublethal doses (20 Gy and 29 Gy), the cells exhibited a dot-like scatter pattern, termed Lgr5-dotted populations. During recovery, 30 days post-irradiation, Lgr5-clustered populations gradually re-emerged while Lgr5-dotted populations declined, implying that some of the Lgr5-dotted stem cell populations re-clustered, aiding regenerations. Based on statistical analysis of the dose-response relationship using wild-type mice, the threshold dose for destroying these stem cell structures is 18 Gy. These findings may help set doses in mouse abdominal irradiation experiments for radiation intestinal injury and for understanding the histological process of injury development.
|
Journal Title |
International Journal of Molecular Sciences
|
ISSN | 14220067
|
Publisher | MDPI
|
Volume | 25
|
Issue | 20
|
Start Page | 11252
|
Published Date | 2024-10-19
|
Rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Medical Sciences
|