ID 95
Author
Katayama, Shigeru College of Engineering, Tokushima Bunri University
Content Type
Departmental Bulletin Paper
Description
Let K = Q() be the bicyclic biquadratic fields, where d_i are the integers expressed in the forms d_i=m^2+4 or m^2+1 (m∈N). Using Tatuzawa's lower bound of L-function, we shall show there are only finitely many such fields with class number one and two. Assuming the generalized Riemann Hypothesis, there exist exactly 54 real bicyclic biquadratic fields with class number one and 118 fields with class number two.
Journal Title
Journal of mathematics, Tokushima University
ISSN
00754293
NCID
AA00701816
Volume
26
Start Page
1
End Page
8
Sort Key
1
Published Date
1993-02-24
Remark
公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
EDB ID
FullText File
language
eng
departments
Science and Technology