ID | 95 |
Author |
Katayama, Shin-ichi
College of General Education, The University of Tokushima
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Katayama, Shigeru
College of Engineering, Tokushima Bunri University
|
Content Type |
Departmental Bulletin Paper
|
Description | Let K = Q() be the bicyclic biquadratic fields, where d_i are the integers expressed in the forms d_i=m^2+4 or m^2+1 (m∈N). Using Tatuzawa's lower bound of L-function, we shall show there are only finitely many such fields with class number one and two. Assuming the generalized Riemann Hypothesis, there exist exactly 54 real bicyclic biquadratic fields with class number one and 118 fields with class number two.
|
Journal Title |
Journal of mathematics, Tokushima University
|
ISSN | 00754293
|
NCID | AA00701816
|
Volume | 26
|
Start Page | 1
|
End Page | 8
|
Sort Key | 1
|
Published Date | 1993-02-24
|
Remark | 公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
|
EDB ID | |
FullText File | |
language |
eng
|
departments |
Science and Technology
|