ID | 116759 |
Author |
Matsumoto, Kazuyuki
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Sasayama, Manabu
National Institute of Technology, Kagawa College
Kirihara, Taiga
Tokushima University
|
Keywords | interview dialogue
topic segmentation
dialogue analysis
|
Content Type |
Journal Article
|
Description | Currently, task-oriented dialogue systems that perform specific tasks based on dialogue are widely used. Moreover, research and development of non-task-oriented dialogue systems are also actively conducted. One of the problems with these systems is that it is difficult to switch topics naturally. In this study, we focus on interview dialogue systems. In an interview dialogue, the dialogue system can take the initiative as an interviewer. The main task of an interview dialogue system is to obtain information about the interviewee via dialogue and to assist this individual in understanding his or her personality and strengths. In order to accomplish this task, the system needs to be flexible and appropriate for detecting topic switching and topic breaks. Given that topic switching tends to be more ambiguous in interview dialogues than in task-oriented dialogues, existing topic modeling methods that determine topic breaks based only on relationships and similarities between words are likely to fail. In this study, we propose a method for detecting topic breaks in dialogue to achieve flexible topic switching in interview dialogue systems. The proposed method is based on multi-task learning neural network that uses embedded representations of sentences to understand the context of the text and utilizes the intention of an utterance as a feature. In multi-task learning, not only topic breaks but also the intention associated with the utterance and the speaker are targets of prediction. The results of our evaluation experiments show that using utterance intentions as features improves the accuracy of topic separation estimation compared to the baseline model.
|
Journal Title |
Sensors
|
ISSN | 14248220
|
Publisher | MDPI
|
Volume | 22
|
Issue | 2
|
Start Page | 694
|
Published Date | 2022-01-17
|
Rights | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Science and Technology
|