Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115569
Author
Mizuno, Takahiko Tokushima University|JST
Tsuda, Takuya Tokushima University
Oe, Ryo Tokushima University
Koresawa, Hidenori Tokushima University
Yamamoto, Hirotsugu Tokushima University|JST|Utsunomiya University KAKEN Search Researchers
Content Type
Journal Article
Description
Dual-comb microscopy (DCM), based on a combination of dual-comb spectroscopy (DCS) with two-dimensional spectral encoding (2D-SE), is a promising method for scan-less confocal laser microscopy giving an amplitude and phase image contrast with the confocality. However, signal loss in a 2D-SE optical system hampers increase in image acquisition rate due to decreased signal-to-noise ratio. In this article, we demonstrated optical image amplification in DCM with an erbium-doped fiber amplifier (EDFA). Combined use of the image-encoded DCS interferogram and the EDFA benefits from not only the batch amplification of amplitude and phase images but also significant rejection of amplified spontaneous emission (ASE) background. Effectiveness of the optical-image-amplified DCM is highlighted in the single-shot quantitative nanometer-order surface topography and the real-time movie of polystyrene beads dynamics under water convection. The proposed method will be a powerful tool for real-time observation of surface topography and fast dynamic phenomena.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
10
Start Page
8338
Published Date
2020-05-20
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology
Institute of Post-LED Photonics