ID | 114682 |
Title Alternative | マイクロファイバーを用いた多孔質炭酸アパタイト顆粒の開発とウサギ頭蓋骨における組織学的評価
|
Author |
Akita, Kazuya
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Fukuda, Naoyuki
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Kamada, Kumiko
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Kudoh, Keiko
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Kurio, Naito
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Tsuru, Kanji
Fukuoka Dental College
Ishikawa, Kunio
Kyushu University
|
Keywords | bone formation
bone substitute
carbonate apatite
hydroxyapatite
optimal pore size
|
Content Type |
Thesis or Dissertation
|
Description | Carbonate apatite (CO3Ap) granules are known to show good osteoconductivity and replaced to new bone. On the other hand, it is well known that a porous structure allows bone tissue to penetrate its pores, and the optimal pore size for bone ingrowth is dependent on the composition and structure of the scaffold material. Therefore, the aim of this study was to fabricate various porous CO3Ap granules through a two-step dissolution-precipitation reaction using CaSO4 as a precursor and 30-, 50-, 120-, and 205-μm diameter microfibers as porogen and to find the optimal pore size of CO3Ap. Porous CO3Ap granules were successfully fabricated with pore size 8.2-18.7% smaller than the size of the original fiber porogen. Two weeks after the reconstruction of rabbit calvarial bone defects using porous CO3Ap granules, the largest amount of mature bone was seen to be formed inside the pores of CO3Ap (120) [porous CO3Ap granules made using 120-μm microfiber] followed by CO3Ap (50) and CO3Ap (30). At 4 and 8 weeks, no statistically significant difference was observed based on the pore size, even though largest amount of mature bone was formed in case of CO3Ap (120). It is concluded, therefore, that the optimal pore size of the CO3Ap is that of CO3Ap (120), which is 85 μm.
|
Journal Title |
Journal of Biomedical Materials Research Part A
|
ISSN | 15493296
15524965
|
NCID | AA11881516
|
Publisher | Wiley
|
Volume | 108
|
Issue | 3
|
Start Page | 709
|
End Page | 721
|
Published Date | 2019-11-22
|
Remark | 内容要旨・審査要旨・論文本文の公開
本論文は,著者Kazuya Akitaの学位論文として提出され,学位審査・授与の対象となっている。 This is the peer reviewed version of the following article: Kazuya Akita, Naoyuki Fukuda, Kumiko Kamada, Keiko Kudoh, Naito Kurio, Kanji Tsuru, Kunio Ishikawa, Youji Miyamoto. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. J Biomed Mater Res. 2020; 108A: 709– 721., which has been published in final form at https://doi.org/10.1002/jbm.a.36850. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. |
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
ETD
|
MEXT report number | 甲第3375号
|
Diploma Number | 甲口第454号
|
Granted Date | 2020-03-23
|
Degree Name |
Doctor of Dental Science
|
Grantor |
Tokushima University
|
departments |
Oral Sciences
University Hospital
|