ID | 116872 |
Author |
Tomiyama, Yasuaki
Okayama University
Shinohara, Tsugumichi
Okayama University
Matsuka, Mirai
Okayama University
Bando, Tetsuya
Okayama University
Mito, Taro
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Tomioka, Kenji
Okayama University
|
Keywords | Circadian clock
Clockwork orange
Clock gene
Cricket
cry2
Molecular oscillation
Locomotor rhythm
|
Content Type |
Journal Article
|
Description | The circadian clock generates rhythms of approximately 24 h through periodic expression of the clock genes. In insects, the major clock genes period (per) and timeless (tim) are rhythmically expressed upon their transactivation by CLOCK/CYCLE, with peak levels in the early night. In Drosophila, clockwork orange (cwo) is known to inhibit the transcription of per and tim during the daytime to enhance the amplitude of the rhythm, but its function in other insects is largely unknown. In this study, we investigated the role of cwo in the clock mechanism of the cricket Gryllus bimaculatus. The results of quantitative RT-PCR showed that under a light/dark (LD) cycle, cwo is rhythmically expressed in the optic lobe (lamina-medulla complex) and peaks during the night. When cwo was knocked down via RNA interference (RNAi), some crickets lost their locomotor rhythm, while others maintained a rhythm but exhibited a longer free-running period under constant darkness (DD). In cwoRNAi crickets, all clock genes except for cryptochrome 2 (cry2) showed arrhythmic expression under DD; under LD, some of the clock genes showed higher mRNA levels, and tim showed rhythmic expression with a delayed phase. Based on these results, we propose that cwo plays an important role in the cricket circadian clock.
|
Journal Title |
Zoological Letters
|
ISSN | 2056306X
|
Publisher | Springer Nature|BioMed Central
|
Volume | 6
|
Start Page | 12
|
Published Date | 2020-11-11
|
Rights | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Bioscience and Bioindustry
|