ID | 116748 |
Title Alternative | aPKC and DOC2b in glucose transport
|
Author |
Nomiyama, Ryuta
Yamaguchi University
Emoto, Masahiro
Yamaguchi University|Emoto Clinic
Fukuda, Naofumi
Yamaguchi University
Matsui, Kumiko
Yamaguchi University
Kondo, Manabu
Yamaguchi University
Sakane, Ayuko
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Sasaki, Takuya
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Tanizawa, Yukio
Yamaguchi University
|
Keywords | Calcium sensor
Glucose transporter 4
Insulin signal
|
Content Type |
Journal Article
|
Description | Aims/introduction: Double C2 domain protein b (DOC2b), one of the synaptotagmins, has been shown to translocate to the plasma membrane, and to initiate membrane-fusion processes of vesicles containing glucose transporter 4 proteins on insulin stimulation. However, the mechanism by which DOC2b is regulated remains unclear. Herein, we identified the upstream regulatory factors of DOC2b in insulin signal transduction. We also examined the role of DOC2b on systemic homeostasis using DOC2b knockout (KO) mice.
Materials and Methods: We first identified DOC2b binding proteins by immunoprecipitation and mutagenesis experiments. Then, DOC2b KO mice were generated by disrupting the first exon of the DOC2b gene. In addition to the histological examination, glucose metabolism was assessed by measuring parameters on glucose/insulin tolerance tests. Insulin-stimulated glucose uptake was also measured using isolated soleus muscle and epididymal adipose tissue. Results: We identified an isoform of atypical protein kinase C (protein kinase C iota) that can bind to DOC2b and phosphorylates one of the serine residues of DOC2b (S34). This phosphorylation is essential for DOC2b translocation. DOC2b KO mice showed insulin resistance and impaired oral glucose tolerance on insulin and glucose tolerance tests, respectively. Insulin-stimulated glucose uptake was impaired in isolated soleus muscle and epididymal adipose tissues from DOC2b KO mice. Conclusions: We propose a novel insulin signaling mechanism by which protein kinase C iota phosphorylates DOC2b, leading to glucose transporter 4 vesicle translocation, fusion and facilitation of glucose uptake in response to insulin. The present results also showed DOC2b to play important roles in systemic glucose homeostasis. |
Journal Title |
Journal of Diabetes Investigation
|
ISSN | 20401124
|
NCID | AA12488319
|
Publisher | Asian Association for the Study of Diabetes|John Wiley & Sons
|
Volume | 10
|
Issue | 3
|
Start Page | 591
|
End Page | 601
|
Published Date | 2018-10-27
|
Rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Medical Sciences
|