Total for the last 12 months
number of access : ?
number of downloads : ?
ID 117270
Author
Otsuka, Airi Tokushima University
Séi, Hiroyoshi Tokushima University
Keywords
AgRP
glucocorticoid
feeding rhythm
insulin sensitivity
skeletal muscle
Content Type
Journal Article
Description
Circadian phase shifts in peripheral clocks induced by changes in feeding rhythm often result in insulin resistance. However, whether the hypothalamic control system for energy metabolism is involved in the feeding rhythm-related development of insulin resistance is unknown. Here, we show the physiological significance and mechanism of the involvement of the agouti-related protein (AgRP) in evening feeding-associated alterations in insulin sensitivity. Evening feeding during the active dark period increased hypothalamic AgRP expression and skeletal muscle insulin resistance in mice. Inhibiting AgRP expression by administering an antisense oligo or a glucocorticoid receptor antagonist mitigated these effects. AgRP-producing neuron-specific glucocorticoid receptor-knockout (AgRP-GR-KO) mice had normal skeletal muscle insulin sensitivity even under evening feeding schedules. Hepatic vagotomy enhanced AgRP expression in the hypothalamus even during ad-lib feeding in wild-type mice but not in AgRP-GR-KO mice. The findings of this study indicate that feeding in the late active period may affect hypothalamic AgRP expression via glucocorticoids and induce skeletal muscle insulin resistance.
Journal Title
International Journal of Molecular Sciences
ISSN
14220067
Publisher
MDPI
Volume
22
Issue
19
Start Page
10831
Published Date
2021-10-07
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences