ID | 115058 |
Author |
Murthy, Dharmapura H. K.
National Institute of Advanced Industrial Science and Technology
Matsuzaki, Hiroyuki
National Institute of Advanced Industrial Science and Technology
Wang, Zheng
Shinshu University
Suzuki, Yohichi
National Institute of Advanced Industrial Science and Technology
Hisatomi, Takashi
Shinshu University
Seki, Kazuhiko
National Institute of Advanced Industrial Science and Technology
Inoue, Yasunobu
The University of Tokyo|Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Domen, Kazunari
Shinshu University|The University of Tokyo
Furube, Akihiro
National Institute of Advanced Industrial Science and Technology|Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
|
Content Type |
Journal Article
|
Description | Tantalum nitride (Ta3N5) is one of the few visible light absorbing photocatalysts capable of overall water splitting (OWS), by which the evolution of both H2 and O2 is possible. Despite favourable energetics, realizing the OWS or efficient H2 evolution in Ta3N5 prepared by the nitridation of tantalum oxide (Ta2O5) or Ta foil remains a challenge even after 15 years of intensive research. Recently our group demonstrated OWS in Ta3N5 when prepared by the short time nitridation of potassium tantalate (KTaO3). To obtain a mechanistic insight on the role of Ta precursor and nitridation time in realizing OWS, ultrafast dynamics of electrons (3435 nm probe) and holes (545 nm probe) is investigated using transient absorption spectroscopy. Electrons decay majorly by trapping in Ta3N5 prepared by the nitridation of Ta2O5, which do not show OWS. However, OWS activity in Ta3N5 prepared by 0.25 hour nitridation of KTaO3 is particularly favoured by the virtually absent electron and hole trapping. On further increasing the nitridation time of KTaO3 from 0.25 to 10 hour, trapping of both electron and hole is enhanced which concurrently results in a reduction of the OWS activity. Insights from correlating the synthesis conditions—structural defects—carrier dynamics—photocatalytic activity is of importance in designing novel photocatalysts to enhance solar fuel production.
|
Journal Title |
Chemical Science
|
ISSN | 20416539
|
Publisher | The Royal Society of Chemistry
|
Volume | 10
|
Issue | 20
|
Start Page | 5353
|
End Page | 5362
|
Published Date | 2019-04-25
|
Rights | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence(https://creativecommons.org/licenses/by/3.0/).
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Science and Technology
|