Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115058
Author
Murthy, Dharmapura H. K. National Institute of Advanced Industrial Science and Technology
Matsuzaki, Hiroyuki National Institute of Advanced Industrial Science and Technology
Wang, Zheng Shinshu University
Suzuki, Yohichi National Institute of Advanced Industrial Science and Technology
Hisatomi, Takashi Shinshu University
Seki, Kazuhiko National Institute of Advanced Industrial Science and Technology
Inoue, Yasunobu The University of Tokyo|Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Domen, Kazunari Shinshu University|The University of Tokyo
Furube, Akihiro National Institute of Advanced Industrial Science and Technology|Tokushima University Tokushima University Educator and Researcher Directory KAKEN Search Researchers
Content Type
Journal Article
Description
Tantalum nitride (Ta3N5) is one of the few visible light absorbing photocatalysts capable of overall water splitting (OWS), by which the evolution of both H2 and O2 is possible. Despite favourable energetics, realizing the OWS or efficient H2 evolution in Ta3N5 prepared by the nitridation of tantalum oxide (Ta2O5) or Ta foil remains a challenge even after 15 years of intensive research. Recently our group demonstrated OWS in Ta3N5 when prepared by the short time nitridation of potassium tantalate (KTaO3). To obtain a mechanistic insight on the role of Ta precursor and nitridation time in realizing OWS, ultrafast dynamics of electrons (3435 nm probe) and holes (545 nm probe) is investigated using transient absorption spectroscopy. Electrons decay majorly by trapping in Ta3N5 prepared by the nitridation of Ta2O5, which do not show OWS. However, OWS activity in Ta3N5 prepared by 0.25 hour nitridation of KTaO3 is particularly favoured by the virtually absent electron and hole trapping. On further increasing the nitridation time of KTaO3 from 0.25 to 10 hour, trapping of both electron and hole is enhanced which concurrently results in a reduction of the OWS activity. Insights from correlating the synthesis conditions—structural defects—carrier dynamics—photocatalytic activity is of importance in designing novel photocatalysts to enhance solar fuel production.
Journal Title
Chemical Science
ISSN
20416539
Publisher
The Royal Society of Chemistry
Volume
10
Issue
20
Start Page
5353
End Page
5362
Published Date
2019-04-25
Rights
This article is licensed under a Creative Commons Attribution 3.0 Unported Licence(https://creativecommons.org/licenses/by/3.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology