ID | 115816 |
Author |
Kinouchi, Tomoya
Tokushima University
Kitazato, Keiko T.
Tokushima University
Tada, Yoshiteru
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Matsushita, Nobuhisa
Tokushima University
Kurashiki, Yoshitaka
Tokushima University
Sata, Masataka
Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
|
Keywords | Neurogenesis
Post-stroke treatment
PPARγ
Resident stem cells
Bone marrow-derived stem cells
|
Content Type |
Journal Article
|
Description | Neurogenesis is essential for a good post-stroke outcome. Exogenous stem cells are currently being tested to promote neurogenesis after stroke. Elsewhere, we demonstrated that treatment with the PPARγ agonist pioglitazone (PGZ) before cerebral ischemia induction reduced brain damage and activated survival-related genes in ovariectomized (OVX) rats. Here, we tested our hypothesis that post-ischemia treatment with PGZ inhibits brain damage and contributes to neurogenesis via activated stem cells. Bone marrow (BM) cells of 7-week-old Wistar female rats were replaced with BM cells from green fluorescent protein-transgenic (GFP+BM) rats. Three weeks later, they were ovariectomized (OVX/GFP+BM rats). We subjected 7-week-old Wistar male and 13-week-old OVX/GFP+BM rats to 90-min cerebral ischemia. Male and OVX/GFP+BM rats were divided into two groups, one was treated with PGZ (2.5 mg/kg/day) and the other served as the vehicle control (VC). In both male and OVX/GFP+BM rats, post-ischemia treatment with PGZ reduced neurological deficits and the infarct volume. In male rats, PGZ decreased the mRNA level of IL-6 and M1-like macrophages after 24 h. In OVX/GFP+BM rats, PGZ augmented the proliferation of resident stem cells in the subventricular zone (SVZ) and the recruitment of GFP+BM stem cells on days 7–14. Both types of proliferated stem cells migrated from the SVZ into the peri-infarct area. There, they differentiated into mature neurons, glia, and blood vessels in association with activated Akt, MAP2, and VEGF. Post-ischemia treatment with PGZ may offer a new avenue for stroke treatment through contribution to neuroprotection and neurogenesis.
|
Journal Title |
Translational Stroke Research
|
ISSN | 1868601X
18684483
|
Publisher | Springer Nature
|
Volume | 9
|
Issue | 3
|
Start Page | 306
|
End Page | 316
|
Published Date | 2017-11-06
|
Rights | This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Medical Sciences
University Hospital
|