number of access : ?
number of downloads : ?
ID 116276
Author
Moriwaki‑Takano, Maki University of Toyama
Keywords
Biosurfactant
Spiculisporic acid
Talaromyces trachyspermus
Fed-batch culture
Bioreactor
Content Type
Journal Article
Description
Spiculisporic acid (SA) is a fatty acid-type biosurfactant with one lactone ring and two carboxyl groups. It has been used in metal removers and cosmetics, because of its low propensity to cause irritation to the skin, its anti-bacterial properties, and high surface activity. In the present study, we report an effective method for producing SA by selecting a high-producing strain and investigating the effective medium components, conditions, and environments for its culture. Among the 11 kinds of Talaromyces species, T. trachyspermus NBRC 32238 showed the highest production of a crystalline substance, which was determined to be SA using NMR. The strain was able to produce SA under acidic conditions from hexoses, pentoses, and disaccharides, with glucose and sucrose serving as the most appropriate substrates. Investigation of nitrogen sources and trace metal ions revealed meat extract and FeCl3 as components that promoted SA production. Upon comparing the two types of cultures with glucose in a baffle flask or aeration bioreactor, SA production was found to be slightly higher in the flask than in the reactor. In the bioreactor culture, sucrose was found to be an appropriate substrate for SA production, as compared to glucose, because with sucrose, the lag time until the start of SA production was shortened. Finally, fed-batch culture with sucrose resulted in 60 g/L of SA, with a total yield of 0.22 g SA/g sucrose and a productivity of 6.6 g/L/day.
Journal Title
Bioresources and Bioprocessing
ISSN
21974365
Publisher
BioMed Central|Springer Nature
Volume
8
Start Page
59
Published Date
2021-07-10
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Bioscience and Bioindustry