Total for the last 12 months
number of access : ?
number of downloads : ?
ID 113779
Author
Sakuwa, Yasuhiro Tokushima University
Ogino, Tomoyasu Tokushima University
Sakamoto, Naotaka Tokushima University
Kimura, Nobuhiro JXTG Nippon Oil & Energy Corporation
Keywords
epoxidation
propylene
propylene oxide
Ag
alkaline carbonates
Content Type
Journal Article
Description
In the present study, the production of propylene oxide (PO) from propylene via gas-phase epoxidation was investigated using various catalysts. Although Ag is known to be a highly active catalyst for the epoxidation of ethylene, it was not active in the present reaction. Both Al and Ti showed high levels of activity, however, which resulted in confusion. The present study was conducted to solve such confusion. Although the employment of MCM-41 modified with Ti and/or Al was reported as an active catalyst for epoxidation, the combination resulted in the formation of PO at a less than 0.1% yield. Since this research revealed that the acidic catalyst seemed favorable for the formation of PO, versions of ZSM-5 that were both undoped and doped with Na, Ti, and Ag were used as catalysts. In these cases, small improvements of 0.67% and 0.57% were achieved in the PO yield on H‒ZSM-5 and Ti‒ZSM-5, respectively. Based on the results of the Ti-dopant and acidic catalysts, Ag metal doped on carbonate species with a smaller surface area was used as a catalyst. As reported, Ag‒Na/CaCO3 showed a greater yield of PO at 1.29%. Furthermore, the use of SrCO3 for CaCO3 resulted in a further improvement in the PO yield to 2.17%. An experiment using CO2 and NH3 pulse together with SEM and TEM examinations for Ag‒Na/CaCO3 revealed that the greatest activity was the result of the greater particle size of metallic Ag rather than the acid‒base properties of the catalysts.
Journal Title
Catalysts
ISSN
20734344
Publisher
MDPI
Volume
9
Issue
8
Start Page
638
Published Date
2019-07-26
Rights
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology