Total for the last 12 months
number of access : ?
number of downloads : ?
ID 117590
Author
Oku, Naoto Teikyo University|University of Shizuoka
Keywords
nanoparticles
liposomes
ischemic stroke
cerebral ischemia/reperfusion injury
blood-brain barrier
biomimetic DDS
leukocytes
intermembrane protein transfer
Content Type
Journal Article
Description
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Journal Title
Pharmaceutics
ISSN
19994923
Publisher
MDPI
Volume
14
Issue
2
Start Page
361
Published Date
2022-02-04
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Pharmaceutical Sciences