ID | 115009 |
Author |
Yamaguchi, Junji
Juntendo University
Suzuki, Chigure
Juntendo University
Nanao, Tomohisa
Tokyo University of Science
Kakuta, Soichirou
Juntendo University
Ozawa, Kentarou
Nara Medical University
Tanida, Isei
Juntendo University
Sunabori, Takehiko
Juntendo University
Komatsu, Masaaki
Niigata University
Tanaka, Keiji
Tokyo Metropolitan Institute of Medical Science
Aoki, Shigeki
Juntendo University
Sakimura, Kenji
Niigata University
Uchiyama, Yasuo
Juntendo University
|
Keywords | Atg9a
axon
conditional knockout mice
degeneration
diffusion tensor MRI
dysgenesis of commissure fibers
nonselective autophagy
selective autophagy
spongiosis
|
Content Type |
Journal Article
|
Description | Conditional knockout mice for Atg9a, specifically in brain tissue, were generated to understand the roles of ATG9A in the neural tissue cells. The mice were born normally, but half of them died within one wk, and none lived beyond 4 wk of age. SQSTM1/p62 and NBR1, receptor proteins for selective autophagy, together with ubiquitin, accumulated in Atg9a-deficient neurosoma at postnatal d 15 (P15), indicating an inhibition of autophagy, whereas these proteins were significantly decreased at P28, as evidenced by immunohistochemistry, electron microscopy and western blot. Conversely, degenerative changes such as spongiosis of nerve fiber tracts proceeded in axons and their terminals that were occupied with aberrant membrane structures and amorphous materials at P28, although no clear-cut degenerative change was detected in neuronal cell bodies. Different from autophagy, diffusion tensor magnetic resonance imaging and histological observations revealed Atg9a-deficiency-induced dysgenesis of the corpus callosum and anterior commissure. As for the neurite extensions of primary cultured neurons, the neurite outgrowth after 3 d culturing was significantly impaired in primary neurons from atg9a-KO mouse brains, but not in those from atg7-KO and atg16l1-KO brains. Moreover, this tendency was also confirmed in Atg9a-knockdown neurons under an atg7-KO background, indicating the role of ATG9A in the regulation of neurite outgrowth that is independent of autophagy. These results suggest that Atg9a deficiency causes progressive degeneration in the axons and their terminals, but not in neuronal cell bodies, where the degradations of SQSTM1/p62 and NBR1 were insufficiently suppressed. Moreover, the deletion of Atg9a impaired nerve fiber tract formation.
|
Journal Title |
Autophagy
|
ISSN | 15548627
15548635
|
NCID | AA12157457
AA12814026
|
Publisher | Taylor & Francis
|
Volume | 14
|
Issue | 5
|
Start Page | 764
|
End Page | 777
|
Published Date | 2018-03-06
|
Rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Institute of Advanced Medical Sciences
|