Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115230
Author
Wada, Shigeo Osaka University
Content Type
Journal Article
Description
We investigate the collapse of a lipid-coated nanobubble and subsequent formation of a lipid vesicle by coarse grained molecular dynamics simulations. A spherical nanobubble coated with a phospholipid monolayer in water is a model of an aqueous dispersion of phospholipids under negative pressure during sonication. When subjected to a positive pressure, the bubble shape deforms into an irregular spherical shape and the monolayer starts to buckle and fold locally. The local folds grow rapidly in multiple directions and forming a discoidal membrane with folds of various amplitudes. Folds of small amplitude disappear in due course and the membrane develops into a unilamellar vesicle via a bowl shape. Folds with large amplitude develop into a bowl shape and a multivesicular shape forms. The membrane shape due to bubble collapse can be an important factor governing the vesicular shape during sonication.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
6
Start Page
28164
Published Date
2016-06-16
Rights
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology