Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115231
Author
Fermann, M. E. IMRA America Inc.
Content Type
Journal Article
Description
Recent progress in ultra low phase noise microwave generation indispensably depends on ultra low phase noise characterization systems. However, achieving high sensitivity currently relies on time consuming averaging via cross correlation, which sometimes even underestimates phase noise because of residual correlations. Moreover, extending high sensitivity phase noise measurements to microwaves beyond 10 GHz is very difficult because of the lack of suitable high frequency microwave components. In this work, we introduce a delayed self-heterodyne method in conjunction with sensitivity enhancement via the use of higher order comb modes from an electro-optic comb for ultra-high sensitivity phase noise measurements. The method obviates the need for any high frequency RF components and has a frequency measurement range limited only by the bandwidth (100 GHz) of current electro-optic modulators. The estimated noise floor is as low as −133 dBc/Hz, −155 dBc/Hz, −170 dBc/Hz and −171 dBc/Hz without cross correlation at 1 kHz, 10 kHz, 100 kHz and 1 MHz Fourier offset frequency for a 10 GHz carrier, respectively. Moreover, since no cross correlation is necessary, RF oscillator phase noise can be directly suppressed via feedback up to 100 kHz frequency offset.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
7
Start Page
2847
Published Date
2017-06-06
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Institute of Post-LED Photonics