Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115823
Author
Kim, Hyejin Tokushima University
Sakai, Satoko Tokushima University
Keywords
Pulmonary surfactant
Synthetic mucosal adjuvant
Oral vaccination
Gastrointestinal immunity
Influenza vaccine
Th17 cytokine
Content Type
Journal Article
Description
We reported previously that a synthetic mucosal adjuvant SF-10, which mimics human pulmonary surfactant, delivers antigen to mucosal dendritic cells in the nasal cavity and promotes induction of humoral and cellular immunity. The aim of the present study was to determine the effects of oral administration of antigen combined with SF-10 (antigen-SF-10) on systemic and local immunity. Oral administration of ovalbumin, a model antigen, combined with SF-10 enhanced ovalbumin uptake into intestinal antigen presenting MHC II+CD11c+ cells and their CD11b+CD103+ and CD11b+CD103- subtype dendritic cells, which are the major antigen presenting subsets of the intestinal tract, more efficiently compared to without SF-10. Oral vaccination with influenza hemagglutinin vaccine (HAv)-SF-10 induced HAv-specific IgA and IgG in the serum, and HAv-specific secretory IgA and IgG in bronchoalveolar lavage fluid, nasal washes, gastric extracts and fecal material; their levels were significantly higher than those induced by subcutaneous HAv or intranasal HAv and HAv-SF-10 vaccinations. Enzyme-linked immunospot assay showed high numbers of HAv-specific IgA and IgG antibody secreting cells in the gastrointestinal and respiratory mucosal lymphoid tissues after oral vaccination with HAv-SF-10, but no or very low induction following oral vaccination with HAv alone. Oral vaccination with HAv-SF-10 provided protective immunity against severe influenza A virus infection, which was significantly higher than that induced by HAv combined with cholera toxin. Oral vaccination with HAv-SF-10 was associated with unique cytokine production patterns in the spleen after HAv stimulation; including marked induction of HAv-responsive Th17 cytokines (e.g., IL-17A and IL-22), high induction of Th1 cytokines (e.g., IL-2 and IFN-γ) and moderate induction of Th2 cytokines (e.g., IL-4 and IL-5). These results indicate that oral vaccination with HAv-SF-10 induces more efficient systemic and local immunity than nasal or subcutaneous vaccination with characteristically high levels of secretory HAv-specific IgA in various mucosal organs and protective immunity.
Journal Title
Vaccine
ISSN
0264410X
NCID
AA11541256
AA10491877
Publisher
Elsevier
Volume
37
Issue
4
Start Page
612
End Page
622
Published Date
2018-12-13
Rights
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Institute of Advanced Medical Sciences