ID | 115837 |
Author |
Adachi, Saeko
National Cancer Center|Kyushuu University
Hamoya, Takahiro
National Cancer Center
Fujii, Gen
National Cancer Center
Narita, Takumi
National Cancer Center
Komiya, Masami
National Cancer Center
Miyamoto, Shingo
Sasaki Foundation
Kurokawa, Yurie
National Cancer Center
Takahashi, Maiko
National Cancer Center
Takayama, Tetsuji
University of Tokushima
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Ishikawa, Hideki
Kyoto Prefectural University of Medicine
Tashiro, Kosuke
Kyushuu University
Mutoh, Michihiro
National Cancer Center
|
Keywords | colorectal cancer chemoprevention
curcumin
min mice
nuclear factor-κB
Theracurmin
|
Content Type |
Journal Article
|
Description | Colorectal cancer (CRC) is the second leading cause of cancer death worldwide. Therefore, it is important to establish useful methods for preventing CRC. One prevention strategy involves the use of cancer chemopreventive agents, including functional foods. We focused on the well‐known cancer chemopreventive agent curcumin, which is derived from turmeric. However, curcumin has the disadvantage of being poorly soluble in water due to its high hydrophobicity. To overcome this problem, the formation of submicron particles with surface controlled technology has been applied to curcumin to give it remarkably improved water solubility, and this derived compound is named Theracurmin. To date, the preventive effects of Theracurmin on hereditary intestinal carcinogenesis have not been elucidated. Thus, we used Apc‐mutant mice, a model of familial adenomatous polyposis, to evaluate the effects of Theracurmin. First, we showed that treatment with 10‐20 µM Theracurmin for 24 hours reduced nuclear factor‐κB (NF‐κB) transcriptional activity in human colon cancer DLD‐1 and HCT116 cells. However, treatment with curcumin mixed in water did not change the NF‐κB promoter transcriptional activity. As NF‐κB is a regulator of inflammation‐related factors, we next investigated the downstream targets of NF‐κB: monocyte chemoattractant protein‐1 (MCP‐1) and interleukin (IL)‐6. We found that treatment with 500 ppm Theracurmin for 8 weeks inhibited intestinal polyp development and suppressed MCP‐1 and IL‐6 mRNA expression levels in the parts of the intestine with polyps. This report provides a proof of concept for the ongoing Theracurmin human trial (J‐CAP‐C study).
|
Journal Title |
Cancer Science
|
ISSN | 13497006
|
Publisher | Japanese Cancer Association|John Wiley & Sons
|
Volume | 111
|
Issue | 4
|
Start Page | 1367
|
End Page | 1374
|
Published Date | 2020-01-28
|
Rights | This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License(https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Medical Sciences
|