ID | 118427 |
Author |
Koyanagi, Kayo
Osaka Dental University
Kataoka, Kosuke
Osaka Dental University|Tokushima University
Tokushima University Educator and Researcher Directory
KAKEN Search Researchers
Yoshimatsu, Hideki
Osaka Dental University
Fujihashi, Kohtaro
Chiba University|The University of Tokyo|The University of Alabama at Birmingham
Miyake, Tatsuro
Osaka Dental University
|
Keywords | Statherin
Acidic proline-rich protein 1 (PRP1)
Porphyromonas gingivalis (Pg)
Colonization
Salivary secretory IgA antibody (Salivary SIgA Ab)
|
Content Type |
Journal Article
|
Description | Background: We previously showed that fimbriae-bore from Poryphyromonas gingivalis (Pg), one of the putative periodontopathogenic bacteria specifically bound to a peptide domain (stat23, prp21) shared on statherin or acidic proline-rich protein 1 (PRP1) molecule of human salivary proteins (HSPs). Here, we investigated whether the nasal administration of DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 as double DNA adjuvant (dDA) with stat23 and prpr21 induces antigen (Ag)-specific salivary secretory IgA (SIgA) antibodies (Abs) in mice. Further, we examined that stat23- and prpr21-specific salivary SIgA Abs induced by dDA have an impact on Pg-binding to human whole saliva-coated hydroxyapatite beads (wsHAPs).
Material and methods: C57BL/6N mice were nasally immunized with dDA plus sta23 or/and prp21 peptide as Ag four times at weekly intervals. Saliva was collected one week after the final immunization and was subjected to Ag-specific ELISA. To examine the functional applicability of Ag-specific SIgA Abs, SIgA-enriched saliva samples were subjected to Pg binding inhibition assay to wsHAPs. Results: Significantly elevated levels of salivary SIgA Ab to stat23 or prp21 were seen in mice given nasal stat23 or prp21 with dDA compared to those in mice given Ag alone. Of interest, mice nasally given the mixture of stat23 and prp21 as double Ags plus dDA, resulted in both stat23- and prp21-specific salivary SIgA Ab responses, which are mediated through significantly increased numbers of CD11c+ dendritic cell populations and markedly elevated Th1 and Th2 cytokines production by CD4+ T cells in the mucosal inductive and effector tissues. The SIgA Ab-enriched saliva showed significantly reduced numbers of live Pg cells binding to wsHAPs as compared with those in mice given double Ags without dDA or naïve mice. Additionally, saliva from IgA-deficient mice given nasal double Ags plus dDA indicated no decrease of live Pg binding to wsHAPs. Conclusion: These findings show that HSP-derived peptides-specific salivary SIgA Abs induced by nasal administration of stat23 and prp21 peptides plus dDA, play an essential role in preventing Pg attachment and colonization on the surface of teeth, suggesting a potency that the SIgA may interrupt and mask fimbriae-binding domains in HSPs on the teeth. |
Journal Title |
BMC Oral Health
|
ISSN | 14726831
|
NCID | AA11839983
|
Publisher | BioMed Central|Springer Nature
|
Volume | 23
|
Start Page | 123
|
Published Date | 2023-02-24
|
Rights | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
|
EDB ID | |
DOI (Published Version) | |
URL ( Publisher's Version ) | |
FullText File | |
language |
eng
|
TextVersion |
Publisher
|
departments |
Oral Sciences
|