ID 73
Author
Yamamoto, Norio Department of Applied Mathematics Faculty of Engineering Tokushima University
Content Type
Departmental Bulletin Paper
Description
We consider bifurcation points of a parameter-dependent nonlinear equation F(x, B)=0 whose left member F(x, B) satisfies the condition F(Sx, B)=SF(x, B) for a matrix S which has eigenvalues ±1. If the x-component x^^^ of a bifurcation point (x^^^, B^^^) is an eigenvector corresponding to the eigenvalue 1 (or-1) of the matrix S, then we can compute (x^^^, B^^^) with high accuracy in a way using an augmented system of nonlinear equations which contains the equation F(x, B)=0. Moreover we also give a necessary and sufficient condition for guaranteeing the isolatedness of such a bifurcation point.
Journal Title
Journal of mathematics, Tokushima University
ISSN
00754293
NCID
AA00701816
Volume
19
Start Page
63
End Page
99
Sort Key
63
Published Date
1985-10-30
Remark
公開日:2010年1月24日で登録したコンテンツは、国立情報学研究所において電子化したものです。
FullText File
language
eng