Total for the last 12 months
number of access : ?
number of downloads : ?
ID 118871
Author
Hamabe, Kenji Tokushima University
Jinnouchi, Osamu Imai Otorhinolaryngology Clinic
Toda, Naoki Anan Medical Center
Kawata, Ikuji Yoshinogawa Medical Center
Keywords
obstructive sleep apnea syndrome
auditory property
polysomnography
artificial neural network
snoring/breathing episode
Content Type
Journal Article
Description
The definitive diagnosis of obstructive sleep apnea syndrome (OSAS) is made using an overnight polysomnography (PSG) test. This test requires that a patient wears multiple measurement sensors during an overnight hospitalization. However, this setup imposes physical constraints and a heavy burden on the patient. Recent studies have reported on another technique for conducting OSAS screening based on snoring/breathing episodes (SBEs) extracted from recorded data acquired by a noncontact microphone. However, SBEs have a high dynamic range and are barely audible at intensities >90 dB. A method is needed to detect SBEs even in low-signal-to-noise-ratio (SNR) environments. Therefore, we developed a method for the automatic detection of low-intensity SBEs using an artificial neural network (ANN). However, when considering its practical use, this method required further improvement in terms of detection accuracy and speed. To accomplish this, we propose in this study a new method to detect low SBEs based on neural activity pattern (NAP)-based cepstral coefficients (NAPCC) and ANN classifiers. Comparison results of the leave-one-out cross-validation demonstrated that our proposed method is superior to previous methods for the classification of SBEs and non-SBEs, even in low-SNR conditions (accuracy: 85.99 ± 5.69% vs. 75.64 ± 18.8%).
Journal Title
Applied Sciences
ISSN
20763417
Publisher
MDPI
Volume
12
Issue
4
Start Page
2242
Published Date
2022-02-21
Rights
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Science and Technology