Total for the last 12 months
number of access : ?
number of downloads : ?
ID 117852
Author
Seto, Hiroe Osaka University
Oyama, Asuka Osaka University
Kitora, Shuji Osaka University
Toki, Hiroshi Osaka University
Yamamoto, Ryohei Osaka University
Kotoku, Jun’ichi Osaka University|Teikyo University
Shinzawa, Maki Osaka University
Yamakawa, Miyae Osaka University
Fukui, Sakiko Osaka University|Tokyo Medical and Dental University
Moriyama, Toshiki Osaka University
Content Type
Journal Article
Description
We sought to verify the reliability of machine learning (ML) in developing diabetes prediction models by utilizing big data. To this end, we compared the reliability of gradient boosting decision tree (GBDT) and logistic regression (LR) models using data obtained from the Kokuho-database of the Osaka prefecture, Japan. To develop the models, we focused on 16 predictors from health checkup data from April 2013 to December 2014. A total of 277,651 eligible participants were studied. The prediction models were developed using a light gradient boosting machine (LightGBM), which is an effective GBDT implementation algorithm, and LR. Their reliabilities were measured based on expected calibration error (ECE), negative log-likelihood (Logloss), and reliability diagrams. Similarly, their classification accuracies were measured in the area under the curve (AUC). We further analyzed their reliabilities while changing the sample size for training. Among the 277,651 participants, 15,900 (7978 males and 7922 females) were newly diagnosed with diabetes within 3 years. LightGBM (LR) achieved an ECE of 0.0018 ± 0.00033 (0.0048 ± 0.00058), a Logloss of 0.167 ± 0.00062 (0.172 ± 0.00090), and an AUC of 0.844 ± 0.0025 (0.826 ± 0.0035). From sample size analysis, the reliability of LightGBM became higher than LR when the sample size increased more than 104. Thus, we confirmed that GBDT provides a more reliable model than that of LR in the development of diabetes prediction models using big data. ML could potentially produce a highly reliable diabetes prediction model, a helpful tool for improving lifestyle and preventing diabetes.
Journal Title
Scientific Reports
ISSN
20452322
Publisher
Springer Nature
Volume
12
Start Page
15889
Published Date
2022-10-11
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Medical Sciences