Total for the last 12 months
number of access : ?
number of downloads : ?
ID 115576
Author
Sugano, Shigeo S. The University of Tokushima
Keywords
CRISPR/Cas9
Genome editing
Genomics
Molecular breeding
Woody plants
Content Type
Journal Article
Description
Engineered endonucleases that digest the specific sequences can be used to modify target genomes precisely. This is called “genome editing” and is used widely to modify the genome of various organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as a genome editing tool, in the form of designed ZF nucleases and, more recently, transcription activator-like effector as well as the clustered, regularly interspaced, short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system that targets RNA–DNA rather than protein–DNA interactions have been used successfully. These are powerful tools with which targeted gene modifications can be introduced in various organisms, including various plant species. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved using custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end joining repair pathway and/or gene targeting via homologous recombination to occur efficiently at specific sites in the genome. This review provides an overview of the current status of genomics and genetic engineering of woody plants, and recent advances in genome editing technologies in plants as well as fungi. We also discuss how these strategies can provide insights into molecular breeding technology for woody plants.
Journal Title
Journal of Wood Science
ISSN
16114663
NCID
AA11200007
Publisher
The Japan Wood Research Society|Springer Nature
Volume
62
Issue
3
Start Page
217
End Page
225
Published Date
2016-03-11
Rights
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
EDB ID
DOI (Published Version)
URL ( Publisher's Version )
FullText File
language
eng
TextVersion
Publisher
departments
Bioscience and Bioindustry