直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 110620
タイトルヨミ
シナプス ケツゴウ ニューロン モデル ノ ブンキ カイセキ
タイトル別表記
Bifurcation analysis of synaptically coupled neuronal model
著者
吉永, 哲哉 徳島大学医学部保健学科医用放射線科学講座 徳島大学 教育研究者総覧 KAKEN研究者をさがす
キーワード
coupled neuron model
synaptic transmission
bifurcation
nonlinear dynamical system
資料タイプ
学術雑誌論文
抄録
We investigate bifurcations of periodic solutions in model equations of neurons coupled through the characteristics of synaptic transmissions with a time delay. The model can be considered as a dynamical system whose solution includes jumps depending on a condition related to the behavior of the trajectory. Although the solution is discontinuous, we can define the Poincare map as a synthesis of successive submaps, and give its derivatives for obtaining periodic points and their bifurcations.Using our proposed method, we clarify mechanisms of bifurcations among synchronized oscillations with phase-locking patterns by analyzing periodic solutions observed in a model of coupled Hodgkin-Huxley equations. Moreover we illustrate a mechanism of the generation of chaotic itinerancy or the phenomenon of chaotic transitions among several quasi-stable states, which corresponds to associative dynamics or memory searching process in real neurons, by the analysis of four-coupled Bonhoffer-van der Pol equations.
掲載誌名
四国医学雑誌
ISSN
00373699
cat書誌ID
AN00102041
出版者
徳島医学会
59
4-5
開始ページ
228
終了ページ
234
並び順
228
発行日
2003-10-25
EDB ID
フルテキストファイル
言語
jpn
著者版フラグ
出版社版
部局
医学系