ID | 110620 |
タイトルヨミ | シナプス ケツゴウ ニューロン モデル ノ ブンキ カイセキ
|
タイトル別表記 | Bifurcation analysis of synaptically coupled neuronal model
|
著者 | |
キーワード | coupled neuron model
synaptic transmission
bifurcation
nonlinear dynamical system
|
資料タイプ |
学術雑誌論文
|
抄録 | We investigate bifurcations of periodic solutions in model equations of neurons coupled through the characteristics of synaptic transmissions with a time delay. The model can be considered as a dynamical system whose solution includes jumps depending on a condition related to the behavior of the trajectory. Although the solution is discontinuous, we can define the Poincare map as a synthesis of successive submaps, and give its derivatives for obtaining periodic points and their bifurcations.Using our proposed method, we clarify mechanisms of bifurcations among synchronized oscillations with phase-locking patterns by analyzing periodic solutions observed in a model of coupled Hodgkin-Huxley equations. Moreover we illustrate a mechanism of the generation of chaotic itinerancy or the phenomenon of chaotic transitions among several quasi-stable states, which corresponds to associative dynamics or memory searching process in real neurons, by the analysis of four-coupled Bonhoffer-van der Pol equations.
|
掲載誌名 |
四国医学雑誌
|
ISSN | 00373699
|
cat書誌ID | AN00102041
|
出版者 | 徳島医学会
|
巻 | 59
|
号 | 4-5
|
開始ページ | 228
|
終了ページ | 234
|
並び順 | 228
|
発行日 | 2003-10-25
|
EDB ID | |
フルテキストファイル | |
言語 |
jpn
|
著者版フラグ |
出版社版
|
部局 |
医学系
|