ID 110918
著者
資料タイプ
紀要論文
抄録
Let L(u) = L(u,∇u) be a functional on W1,1(Ω) whose formal Euler-Lagrange equation at the critical point u of L is the prescribed mean curvature equation:

−div(∇u /√1 + |∇u|2)= g(x, u).

Suppose L(u) = L(u,Du) is a relaxed functional of L(u), the weakly lower semicontinuous extension of L on the space of functions of bounded variation. How dose the relaxation affect the prescribed mean curvature equation? Instead of an Euler-Lagrange equation, we obtain here the so-called Euler-Lagrange system of equations which the critical points u of L and their derivatives Du necessarily satisfy.
掲載誌名
Journal of Mathematics
ISSN
13467387
cat書誌ID
AA11595324
50
開始ページ
127
終了ページ
144
並び順
127
発行日
2016
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系