ID | 111826 |
著者 | |
資料タイプ |
紀要論文
|
抄録 | In this paper, we study the Fourier transformation of Lploc-functions and Lqc-functions. Here we assume that the condition 1/p+1/q=1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) is satisfied. Thereby we prove the structure theorems of the image spaces FLploc and FLqc. We study the convolution f∗g of a Lrc-function f and a Lploc-function g. Here assume d ≥ 1. Further we assume that the condition 1/q=1/p+1/r−1, (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞) is satisfied. This is a generalization of the theory of Fourier transformations of L2loc-functions.
|
掲載誌名 |
Journal of Mathematics
|
ISSN | 13467387
|
cat書誌ID | AA11595324
|
出版者 | TOKUSHIMA UNIVERSITY
|
巻 | 51
|
開始ページ | 55
|
終了ページ | 70
|
並び順 | 55
|
発行日 | 2017
|
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
理工学系
|