直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 113250
著者
Fujino, Naoya Tokushima University
キーワード
emotion estimation
user's gender
deep neural networks
資料タイプ
学術雑誌論文
抄録
In this study, we focus on Twitter as a representative SNS and target emotion estimation from tweets posted on Twitter by male and female users. Specifically, we construct gender-based emotion estimation models assuming that there are different word usage tendencies between genders. By analyzing gender-specific differences in the use of emotion-related slang and emoji, we propose a method to improve emotion estimation based on neural networks using a different distributed representation model for each gender. Our evaluation experiments show that training with Deep Convolutional Neural Networks using word's distributed representation as the feature produced higher estimation accuracy than training with Feed Forward Neural Networks.
掲載誌名
International Journal of Advanced Intelligence
ISSN
18833918
出版者
AIA International Advanced Information Institute
10
1
開始ページ
121
終了ページ
133
発行日
2018-03
EDB ID
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系