ID | 114265 |
著者 |
米田, 二良
Kanagawa Institute of Technology
|
キーワード | Weierstrass semigroup
Double cover of a curve
Rational ruled surface
|
資料タイプ |
学術雑誌論文
|
抄録 | Let (C, P) be a pointed non-singular curve such that the Weierstrass semigroup H(P) of P is a γ-hyperelliptic numerical semigroup. Torres showed that there exists a double covering π : C → C‘ such that the point P is a ramification point of π if the genus g of C is larger than or equal to 6γ + 4. Kato and the authors also showed that the same result holds in the case g = 6γ + 3 or 6γ + 2. In this paper we prove that there exists a double covering π : C → C’ satisfying the above condition even if g = 6γ + 1, 6γ and H(P) does not contain 4.
|
掲載誌名 |
Bulletin of the Brazilian Mathematical Society, New Series
|
ISSN | 16787544
16787714
|
cat書誌ID | AA10918723
|
出版者 | Springer Nature|Sociedade Brasileira de Matemática
|
巻 | 48
|
号 | 2
|
開始ページ | 209
|
終了ページ | 218
|
発行日 | 2016-08-10
|
備考 | This is a post-peer-review, pre-copyedit version of an article published in Bulletin of the Brazilian Mathematical Society, New Series. The final authenticated version is available online at: https://doi.org/10.1007/s00574-016-0002-z.
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
著者版
|
部局 |
理工学系
|