直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 114474
著者
Li, Wei Tokyo Institute of Technology
Michinobu, Tsuyoshi Tokyo Institute of Technology
資料タイプ
学術雑誌論文
抄録
A highly sensitive catecholamine (CA) sensor was created using a biointerface layer composed of a biopolymer and a potentiometric detection device. For the detection of CAs, 3-aminophenylboronic acid (3-NH2-PBA) was reacted with the carboxyl side chain of L-3,4-dihydroxyphenylalanine (L-dopa, LD) and the PBA-modified L-dopa was directly copolymerized with LD on an Au electrode, resulting in a 3.5 nm thick PBA-modified poly(PBA–LD/LD) layer-coated Au electrode. By connecting the PBA–LD-coated Au electrode to a field-effect transistor (FET), the molecular charge changes at the biointerface of the Au electrode, which was caused by di-ester binding of the PBA–CA complex, were transduced into gate surface potential changes. Effective CAs included LD, dopamine (DA), norepinephrine (NE), and epinephrine (EP). The surface potential of the PBA–LD-coated Au changed after the addition of 40 nM of each CA solution; notably, the PBA–LD-coated Au showed a higher sensitivity to LD because the surface potential change could already be observed after 1 nM of LD was added. The fundamental parameter analyses of the PBA–LD to CA affinity from the surface potential shift against each CA concentration indicated the highest affinity to LD (binding constant (Ks): 1.68 × 106 M–1, maximum surface potential shift (Vmax): 182 mV). Moreover, the limit of detection for each CA was 3.5 nM in LD, 12.0 nM in DA, 7.5 nM in NE, and 12.6 nM in EP. From these results, it is concluded that the poly(PBA–LD/LD)-coated gate FET could become a useful biosensor for neurotransmitters, hormones, and early detection of Parkinson’s disease.
掲載誌名
ACS Omega
ISSN
24701343
出版者
ACS Publications
3
6
開始ページ
6719
終了ページ
6727
発行日
2018-06-20
権利情報
This is an open access article published under an ACS AuthorChoice License (https://pubs.acs.org/page/policy/authorchoice_termsofuse.html), which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
ポストLEDフォトニクス研究所