直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 114918
タイトル別表記
Cardiomyocyte culture with in vivo functions
著者
森島, 真幸 Tokushima University
資料タイプ
学術雑誌論文
抄録
Rationale
Diabetes causes cardiac dysfunction, and understanding of its mechanism is still incomplete. One reason could be limitations in modeling disease conditions by current in vitro cardiomyocyte culture. Emerging evidence suggests that the mechanical properties of the microenvironment affect cardiomyocyte function. Nevertheless, the impact of high glucose on cardiomyocytes cultured on substrates whose stiffness matches that of the heart (approximately 15 kPa) is untested.
Objective
To test the hypothesis that cardiomyocytes cultured in microenvironments that mimic the mechanical properties of those for cardiomyocytes in vivo may reproduce the pathophysiology characteristics of diabetic cardiomyocytes ex vivo, such as the morphological appearance, ROS accumulation, mitochondrial dysfunction, apoptosis and insulin-stimulated glucose uptake.
Methods and results
Isolated neonatal rat cardiomyocytes were seeded on 15 kPa polyacrylamide (PAA) gels, whose stiffness mimics that of heart tissues, or on glass coverslips, which represent conventional culture devices but are unphysiologically stiff. Cells were then cultured at 5 mM glucose, corresponding to the normal blood glucose level, or at high glucose levels (10 to 25 mM). Cytoskeletal disorganization, ROS accumulation, attenuated mitochondrial membrane potential and attenuated ATP level caused by high glucose and their reversal by a ROS scavenger were prominent in cells on gels, but not in cells on coverslips. The lack of response to ROS scavenging could be attributable to enhanced apoptosis in cells on glass, shown by enhanced DNA fragmentation and higher caspase 3/7 activity in cells on glass coverslips. High-glucose treatment also downregulated GLUT4 expression and attenuated insulin-stimulated glucose uptake only in cells on 15 kPa gels.
Conclusion
Our data suggest that a mechanically compliant microenvironment increases the susceptibility of primary cardiomyocytes to elevated glucose levels, which enables these cells to serve as an innovative model for diabetic heart research.
掲載誌名
PLOS ONE
ISSN
19326203
出版者
PLOS
13
8
開始ページ
e0201891
発行日
2018-08-23
権利情報
© 2018 Morishima et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
病院
医学系