直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 115696
著者
Dang, Nannan Xi’an Jiaotong University|Tokushima University
Zhang, Jiazhong Xi’an Jiaotong University
キーワード
thermoacoustic instability
combustion instability
Rijke burner
CFD
flame-induced turbulence
資料タイプ
学術雑誌論文
抄録
The self-excited thermoacoustic instability in a two-dimensional Rijke-type burner with a center-stabilized premixed methane–air flame is numerically studied. The simulation considers the reacting flow, flame dynamics, and radiation model to investigate the important physical processes. A finite volume-based approach is used to simulate reacting flows under both laminar and turbulent flow conditions. Chemical reaction modeling is conducted via the finite-rate/eddy dissipation model with one-step reaction mechanisms, and the radiation heat flux and turbulent flow characteristics are determined by using the P-1 model and the standard k-ε model, respectively. The steady-state reacting flow is first simulated for model verification. Then, the dynamic pressure, velocity, and reaction heat evolutions are determined to show the onset and growth rate of self-excited instability in the burner. Using the fast Fourier transform (FFT) method, the frequency of the limit cycle oscillation is obtained, which agrees well with the theoretical prediction. The dynamic pressure and velocity along the tube axis provide the acoustic oscillation mode and amplitude, also agreeing well with the prediction. Finally, the unsteady flow field at different times in a limit cycle shows that flame-induced vortices occur inside the combustor, and the temperature distribution indicates that the back-and-forth velocity changes in the tube vary the distance between the flame and honeycomb in turn, forming a forward feedback loop in the tube. The results reveal the route of flame-induced thermoacoustic instability in the Rijke-type burner and indicate periodical vortex formation and breakdown in the Rijke burner, which should be considered turbulent flow under thermoacoustic instability.
掲載誌名
Applied Sciences
ISSN
20763417
出版者
MDPI
11
4
開始ページ
1590
発行日
2021-02-10
権利情報
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系