アクセス数 : ?
ダウンロード数 : ?
ID 115874
タイトル別表記
Locating and Stabilizing Unstable Periodic Orbits
著者
美井野, 優 Tokyo University of Technology
伊藤, 大輔 Gifu University
キーワード
Chaos
horseshoe map
symbolic dynamics
unstable periodic point
numerical computation
controlling chaos
資料タイプ
学術雑誌論文
抄録
Based on the theory of symbolic dynamical systems, we propose a novel computation method to locate and stabilize the unstable periodic points (UPPs) in a two-dimensional dynamical system with a Smale horseshoe. This method directly implies a new framework for controlling chaos. By introducing the subset based correspondence between a planar dynamical system and a symbolic dynamical system, we locate regions sectioned by stable and unstable manifolds comprehensively and identify the specified region containing a UPP with the particular period. Then Newton’s method compensates the accurate location of the UPP with the regional information as an initial estimation. On the other hand, the external force control (EFC) is known as an effective method to stabilize the UPPs. By applying the EFC to the located UPPs, robust controlling chaos is realized. In this framework, we never use ad hoc approaches to find target UPPs in the given chaotic set. Moreover, the method can stabilize UPPs with the specified period regardless of the situation where the targeted chaotic set is attractive. As illustrative numerical experiments, we locate and stabilize UPPs and the corresponding unstable periodic orbits in a horseshoe structure of the Duffing equation. In spite of the strong instability of UPPs, the controlled orbit is robust and the control input retains being tiny in magnitude.
掲載誌名
International Journal of Bifurcation and Chaos
ISSN
02181274
17936551
cat書誌ID
AA10810319
出版者
World Scientific
31
4
開始ページ
2150110
発行日
2021-03-30
権利情報
This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC BY) License(https://creativecommons.org/licenses/by/4.0/) which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
情報センター
理工学系