直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 116389
著者
She, Tianhao Tokushima University
キーワード
autism spectrum disorder
robot
dialogue generation
deep learning
資料タイプ
学術雑誌論文
抄録
Autism spectrum disorder (ASD) is a life-long neurological disability, and a cure has not yet been found. ASD begins early in childhood and lasts throughout a person’s life. Through early intervention, many actions can be taken to improve the quality of life of children. Robots are one of the best choices for accompanying children with autism. However, for most robots, the dialogue system uses traditional techniques to produce responses. Robots cannot produce meaningful answers when the conversations have not been recorded in a database. The main contribution of our work is the incorporation of a conversation model into an actual robot system for supporting children with autism. We present the use a neural network model as the generative conversational agent, which aimed at generating meaningful and coherent dialogue responses given the dialogue history. The proposed model shares an embedding layer between the encoding and decoding processes through adoption. The model is different from the canonical Seq2Seq model in which the encoder output is used only to set-up the initial state of the decoder to avoid favoring short and unconditional responses with high prior probability. In order to improve the sensitivity to context, we changed the input method of the model to better adapt to the utterances of children with autism. We adopted transfer learning to make the proposed model learn the characteristics of dialogue with autistic children and to solve the problem of the insufficient corpus of dialogue. Experiments showed that the proposed method was superior to the canonical Seq2sSeq model and the GAN-based dialogue model in both automatic evaluation indicators and human evaluation, including pushing the BLEU precision to 0.23, the greedy matching score to 0.69, the embedding average score to 0.82, the vector extrema score to 0.55, the skip-thought score to 0.65, the KL divergence score to 5.73, and the EMD score to 12.21.
掲載誌名
Electronics
ISSN
20799292
出版者
MDPI
10
19
開始ページ
2393
発行日
2021-09-30
権利情報
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系