直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118006
著者
Amitani, Reishi Tokushima University
キーワード
multi-modal buzz prediction
information diffusion
affective analysis
資料タイプ
学術雑誌論文
抄録
This paper propose a method to predict the stage of buzz-trend generation by analyzing the emotional information posted on social networking services for multimodal information, such as posted text and attached images, based on the content of the posts. The proposed method can analyze the diffusion scale from various angles, using only the information at the time of posting, when predicting in advance and the information of time error, when used for posterior analysis. Specifically, tweets and reply tweets were converted into vectors using the BERT general-purpose language model that was trained in advance, and the attached images were converted into feature vectors using a trained neural network model for image recognition. In addition, to analyze the emotional information of the posted content, we used a proprietary emotional analysis model to estimate emotions from tweets, reply tweets, and image features, which were then added to the input as emotional features. The results of the evaluation experiments showed that the proposed method, which added linguistic features (BERT vectors) and image features to tweets, achieved higher performance than the method using only a single feature. Although we could not observe the effectiveness of the emotional features, the more emotions a tweet and its reply match had, the more empathy action occurred and the larger the like and RT values tended to be, which could ultimately increase the likelihood of a tweet going viral.
掲載誌名
Electronics
ISSN
20799292
出版者
MDPI
11
21
開始ページ
3431
発行日
2022-10-23
権利情報
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系