直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118923
著者
Dou, Rongyu Tokushima University
キーワード
Neuro-Symbolic AI
Depression detection
Social media analysis
Early intervention
Sentiment analysis
資料タイプ
学術雑誌論文
抄録
This paper introduces TAM-SenticNet, a Neuro-Symbolic AI framework uniquely designed for early depression detection through social media content analysis. Merging neural networks for feature extraction and sentiment analysis with advanced symbolic reasoning, TAM-SenticNet overcomes the limitations of traditional diagnostic tools, particularly in real-time responsiveness and interpretability. The symbolic reasoning, powered by SenticNet, provides a deep, structured understanding of emotional expressions, greatly enhancing model explainability and logical inference. Empirical evaluations reveal that TAM-SenticNet excels beyond existing models in performance metrics, achieving a Precision of 0.665, Recall of 0.881, and F1-score of 0.758, coupled with superior latency metrics, including ERDE5 and ERDE50 at 0.025, LatencyTP at 1.0, and Flatency at 0.675. These achievements highlight TAM-SenticNet’s cutting-edge approach to early depression detection, making it a pioneering tool in the application of AI for mental health informatics.
掲載誌名
Computers and Electrical Engineering
ISSN
18790755
00457906
cat書誌ID
AA00613548
AA11527073
出版者
Elsevier
114
開始ページ
109071
発行日
2024-01-20
備考
論文本文は2026-01-20以降公開予定
権利情報
© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
EDB ID
出版社版DOI
出版社版URL
言語
eng
著者版フラグ
その他
部局
理工学系