直近一年間の累計
アクセス数 : ?
ダウンロード数 : ?
ID 118851
タイトル別表記
EEG Analysis Method to Detect Unspoken Answers to Questions Using MSNNs
著者
キーワード
Answer to question
convolutional neural networks
electroencephalogram
multistage neural networks
personal model
support vector machine
資料タイプ
学術雑誌論文
抄録
Brain–computer interfaces (BCI) facilitate communication between the human brain and computational systems, additionally offering mechanisms for environmental control to enhance human life. The current study focused on the application of BCI for communication support, especially in detecting unspoken answers to questions. Utilizing a multistage neural network (MSNN) replete with convolutional and pooling layers, the proposed method comprises a threefold approach: electroencephalogram (EEG) measurements, EEG feature extraction, and answer classification. The EEG signals of the participants are captured as they mentally respond with “yes” or “no” to the posed questions. Feature extraction was achieved through an MSNN composed of three distinct convolutional neural network models. The first model discriminates between the EEG signals with and without discernible noise artifacts, whereas the subsequent two models are designated for feature extraction from EEG signals with or without such noise artifacts. Furthermore, a support vector machine is employed to classify the answers to the questions. The proposed method was validated via experiments using authentic EEG data. The mean and standard deviation values for sensitivity and precision of the proposed method were 99.6% and 0.2%, respectively. These findings demonstrate the viability of attaining high accuracy in a BCI by preliminarily segregating the EEG signals based on the presence or absence of artifact noise and underscore the stability of such classification. Thus, the proposed method manifests prospective advantages of separating EEG signals characterized by noise artifacts for enhanced BCI performance.
掲載誌名
IEEE Access
ISSN
21693536
出版者
IEEE
11
開始ページ
137151
終了ページ
137162
発行日
2023-12-05
権利情報
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
EDB ID
出版社版DOI
出版社版URL
フルテキストファイル
言語
eng
著者版フラグ
出版社版
部局
理工学系