ID | 114513 |
著者 |
Matsumoto, Takuya
Nagoya University
Takahashi, Nobunori
Nagoya University
Kojima, Toshihisa
Nagoya University
Yoshioka, Yutaka
Nagoya University
Ishikawa, Jun
Nagoya University
Furukawa, Koichi
Nagoya University
Ono, Kenji
Nagoya University
Sawada, Makoto
Nagoya University
Ishiguro, Naoki
Nagoya University
|
キーワード | Rheumatoid arthritis
Collagen-induced arthritis
Siglec-9
|
資料タイプ |
学術雑誌論文
|
抄録 | Background: The aim of this study was to assess the effects of soluble sialic acid-binding immunoglobulin-type lectin (sSiglec)-9 on joint inflammation and destruction in a murine collagen-induced arthritis (CIA) model and in monolayer cultures of murine macrophages (RAW264.7 cells and peritoneal macrophages) and fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis.
Methods: DBA/1J mice were immunized with type II collagen. Effects of sSiglec-9 were evaluated using a physiologic arthritis score, histological analysis, serum tumor necrosis factor (TNF)-α concentration, and the proportion of forkhead box P3 (Foxp3)-positive regulatory T (Treg) cells. In vivo biofluorescence imaging was used to assess the distribution of sSiglec-9. Levels of M1 (TNF-α, interleukin [IL]-6, and inducible nitric oxide synthase) and M2 (CD206, Arginase-1, and IL-10) macrophage markers and phosphorylation of intracellular signaling molecules were examined in macrophages, and levels of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 were examined in FLS. Results: sSiglec-9 significantly suppressed the clinical and histological incidence and severity of arthritis. The proportion of Foxp3-positive Treg cells significantly improved and serum TNF-α concentration decreased in vivo. Although sSiglec-9 reduced the expression of M1 markers in macrophages, it did not affect the expression of M2 markers and MMPs in FLS. Nuclear factor (NF)-kB p65 phosphorylation was attenuated by sSiglec-9, and chemical blockade of the NF-kB pathway reduced M1 marker expression in RAW264.7 cells. Conclusions: In this study, we have demonstrated the therapeutic effects of sSiglec-9 in a murine CIA model. The mechanism underlying these effects involves the suppression of M1 proinflammatory macrophages by inhibiting the NF-kB pathway. sSiglec-9 may provide a novel therapeutic option for patients with rheumatoid arthritis refractory to currently available drugs. |
掲載誌名 |
Arthritis Research & Therapy
|
ISSN | 14786362
|
出版者 | Springer Nature|BioMed Central
|
巻 | 18
|
開始ページ | 133
|
発行日 | 2016-06-07
|
権利情報 | © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
フルテキストファイル | |
言語 |
eng
|
著者版フラグ |
出版社版
|
部局 |
歯学系
|