ID | 117035 |
著者 |
Ichimura, Humio
Ibaraki University
|
キーワード | ideal class group
2-part
imaginary cyclic field
|
資料タイプ |
学術雑誌論文
|
抄録 | Let p be an odd prime number and let 2e+1 be the highest power of 2 dividing p − 1. For 0 ≤ n ≤ e, let kn be the real cyclic field of conductor p and degree 2n. For a certain imaginary quadratic field L0, we put Ln = L0kn. For 0 ≤ n ≤ e − 1, let Fn be the imaginary quadratic subextension of the imaginary (2, 2)-extension Ln+1/kn with Fn ≠ Ln. We study the Galois module structure of the 2-part of the ideal class group of the imaginary cyclic field Fn. This generalizes a classical result of Rédei and Reichardt for the case n = 0.
|
掲載誌名 |
Journal of the Mathematical Society of Japan
|
ISSN | 18811167
00255645
|
cat書誌ID | AA0070177X
|
出版者 | Mathematical Society of Japan
|
巻 | 74
|
号 | 3
|
開始ページ | 945
|
終了ページ | 972
|
発行日 | 2022-07
|
備考 | 論文本文は2025-07-01以降公開予定
|
EDB ID | |
出版社版DOI | |
出版社版URL | |
言語 |
eng
|
著者版フラグ |
その他
|
部局 |
理工学系
|